透過您的圖書館登入
IP:18.191.223.123
  • 期刊

奈米銀氧化石墨烯對高分子太陽能電池光電轉換效率的影響

EFFECT OF GRAPHENE OXIDE/AG NANOPARTICLES ON THE EFFICIENCY OF POLYMER SOLAR CELLS

摘要


我們採用改良式Hummer法製備之氧化石墨作為氧化石墨烯(grapheme oxide, GO)之前驅物,以硝酸銀(AgNO_3)作為奈米銀粒子前驅物,以檸檬酸鈉做為還原劑合成三種奈米銀氧化石墨烯(GOAg),分別命名為GOAg-1、GOAg-2與GOAg-3。我們將奈米銀石墨烯以濃度1.5 mg/ml分散於N-methyl pyrrolidone (NMP)中,塗佈插層於PEDOT:PSS電動傳輸層與P3HT:PCBM組成的主動層間來製備高分子太陽能電池,研究奈米銀氧化石墨烯對高分子太陽電池光電特性之影響。本研究之太陽能電池元件結構為Glass/ITO/PEDOT:PSS/GOAg/P3HT:PCPDTBT:PC_(61)BM/Ca/Al,我們利用紫外光-可見光吸收光譜儀(UV-Vis)、掃描探針顯微鏡(SPM)、場發射電子顯微鏡(FESEM)和太陽光模擬光源系統,來測量吸收度、粗糙度、表面形態和光電性質。由結果得知,插層這三種GOAg之高分子太陽能電池之短路電流密度(short-circuit current density, J_(sc))、填充因子(fill factor, FF)與光電轉換效率(power conversion efficiency, PCE%)皆比未含奈米銀氧化石墨烯之電池高,顯示插層這三種GOAg於電動傳輸層與主動層間皆能有效提高電池之光電性質。三種GOAg中以GOAg-2具最佳提升效果,因為此電池具有最高的短路電流密度與光電轉換效率,分別為9.71 mA/cm^2與4.02%,與未含奈米銀氧化石墨烯之電池比較分別提升了36.4%與80.3%,此結果可能是由於石墨烯具有高電子遷移率,因此提升了高分子太陽能電池之光電性質。

並列摘要


Graphene oxide / Ag nanoparticles (GOAg) were fabricated via a facile method, employing graphite oxide as a precursor of graphene oxide (GO), AgNO_3 as a precursor of Ag nanoparticles, and sodium citrate as a reducing and stabilizing agent. We synthesized three kinds of GOAg as GOAg-1, GOAg-2 and GOAg-3. We investigated the effect of incorporating GOAg between the hole transfer layer (HTL) of poly (ethylene dioxythiophene) (PEDOT)-polystyrene sulfonic acid (PSS) (PEDOT : PSS) and active layer (P3HT:PCBM = 1:1 weight ratio) on the photovoltaic performance. The cell structure was Glass / ITO / PEDOT : PSS / GOAg / P3HT : PCBM / Ca / Al. The concentration of GOAg solution was 1.5 mg/ml in N-methyl pyrrolidone (NMP) solvent and the GOAg layer was coated on the HTL layer by spin-coating. We used the UV-Vis, SPM, FE-SEM and solar simulator to measure the absorbance, roughness, surface morphology, and power conversion efficiency (PCE), respectively. From these results, we found that the short circuit current density (J_(sc)), fill factor (FF) and PCE of the cells with GOAg are always higher than those of cell without GOAg. The cell with GOAg-2 has the highest short circuit current density 9.71 mA/cm^2, an increase of 36.4%, and the highest power conversion efficiency 4.02%, an increase of 80.3%. These improvements are due to the high carrier mobility of graphene.

參考文獻


Duan, C.,Hu, X.,Chen, K. S.,Yip, H. L.,Li, W.,Huang, F.,Jen, A. K. Y.,Cao, Y.(2012).Fully Visible-LightHarvesting Conjugated Polymers with Pendant Donor-πAcceptor Chromophores for Photovoltaic Applications.Solar Energy Materials and Solar Cells.97,50-58.
He, Y.,Chen, H. Y.,Zhao, G.,Hou, J.,Li, Y.(2011).Biindene-C60 Adducts for the Application as Acceptor in Polymer Solar Cells with Higher Open-Circuit-Voltage.Solar Energy Materials and Solar Cells.95(3),899-903.
Li, G.,Shrotriya, V.,Huang, J.,Yao, Y.,Moriarty, T.,Emery, K.,Yang, Y.(2005).High-Efficiency Solution Processable Polymer Photovoltaic Cells by Self-Organization of Polymer Blends.Nature Materials.4,864-868.
Bian, L.,Zhu, E.,Tang, J.,Tang, W.,Zhang, F.(2012).Recent Progress in the Design of Narrow Bandgap Conjugated Polymers for High-Efficiency Organic Solar Cells.Progress in Polymer Science.37(9),1292-1331.
Chang, C. L.,Liang, C. W.,Syu, J. J.,Wang, L.,Leung, M. K.(2011).Triphenylamine-Substituted Methanofullerene Derivatives for Enhanced Open-Circuit Voltages and Efficiencies in Polymer Solar Cells.Solar Energy Materials and Solar Cells.95(8),2371-2379.

延伸閱讀