透過您的圖書館登入
IP:3.136.87.35
  • 期刊

奈米多孔性二氧化鈦光電極微結構設計在量子點敏化太陽能電池的應用

摘要


本論文利用硫化鎘量子點(CdS quantum dots)作為染料敏化太陽能電池(Dye-sensitized Solar Cells, DSSCs)的光敏化劑。本文重點在於利用旋轉塗佈法,建構出具有微奈米多層結構的多孔性二氧化鈦薄膜光電極,再利用化學浸泡沉積法(Chemical Bath Deposition, CBD),將硫化鎘量子點組裝至二氧化鈦薄膜光電極上,以探討不同結構的二氧化鈦薄膜光電極,對硫化鎘量子點的沉積行為,及其在光電轉化效率的影響。實驗結果發現在P25(25nm)TiO2薄膜外層再組裝上大粒徑的二氧化鈦粒子(PT-501A, 100nm),不只能使TiO2光電極具有較大孔洞,以利於硫化鎘量子點的沉積外,大粒徑TiO2粒子亦可藉由光散射效應(Scattering effect),來提升電池的光電流。在不同的光電極結構中,ITO/6.5μm P25/3.7μm PT-501A (100nm)/CdS-3-layer之電池,具有最佳效率值(1.14%),證實了此微奈米多層結構設計,也適用於量子點敏化太陽能電池效能之提升。

並列摘要


In this study, cadmium sulfide quantum dots (CdS QDs) were used as a sensitizer of dye-sensitized Solar Cells (DSSCs). CdS QDs were deposited on the titania photoelectrodes using chemical bath deposition (CBD). Here, we focused on the discussion of the cell efficiency for different structure titania photoelectrodes with micro/nano mutilayer porous structure made by spin coating method. From the experimental results, the assembly of the larger size titania particles (PT-501-A, l00 nm) on the outer layer of P25 (25 nm) TiO2 layers was not only with larger holes and scattering effect, but also with contribution to photocurrent by CdS QDs deposited on the larger size particles. Among the different structures, ITO/6.5 μm P25/3.7 μm PT-501A (l00 nm)/CBD3 has the highest cell efficiency (1.14%). Therefore, micro/nano multilayer structure design of porous titania photoelectrodes was also suitable for improving cell performance of quantum dots dye-sensitized Solar Cells, attributed to the effect of scattering particles in enhancing the light harvesting efficiency.

被引用紀錄


陳秀瑛(2009)。熱氧化法製作垂直二氧化鈦奈米柱及其光伏效能研究〔碩士論文,國立交通大學〕。華藝線上圖書館。https://doi.org/10.6842/NCTU.2009.00677
林成旻(2012)。膠態電解質對染料敏化太陽能電池之研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2012.00023
張文齡(2011)。爐氛圍對二氧化鈦奈米線成長之影響〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0028-3006201121491000

延伸閱讀