透過您的圖書館登入
IP:3.19.73.227
  • 期刊

電泳沉積法製備TiO_2/CNT/SS316L複合電極特性探討

The characteristics of TiO_2/CNT/SS316L composite electrodes prepared by electrophoretic deposition

摘要


燃料電池系統陰極結合高級氧化程序光電-芬頓系統(Photo-Electro-Fenton)具提供汙廢水淨化處理功能;而電極材料為影響系統效能之的關鍵因素。本研究以具高導電及化學穩定性之SS316L作為基材;藉由電泳沉積法進行奈米碳管(Carbon Nanotubes, CNT)及不同時間二氧化鈦(Titanium Dioxide, TiO_2)表面塗層複合電極製備,冀能提高陰極效能,實驗包括:(1)線性掃描伏安法;(2)循環伏安法;(3)接觸角量測儀;(4)掃描式電子顯微鏡觀察;(5)陰極系統脫色效率測試。由結果顯示,經電泳沉積時間5分鐘製備電極具最高之響應電流與電荷捕獲量,分別為0.975mA/cm^2及0.052 C,同時具最小之接觸角31.5゚,且表面具最佳披覆及系統最高反應常數0.022 min^(-1);相較優於SS316L基材之0.007min^(-1)。綜合以上結果,本研究成功藉由電沉積法製備TiO_2/CNT/SS316L複合電極,有助於未來燃料電池電極之研究。

並列摘要


The cathode of the fuel cell combined with the Photo-Electro-Fenton system has the function of cleaning wastewater, and the electrode is a key factor to influence the efficiency of the system. In this study, SS316L with high conductivity and chemical stability was used as the substrate, and the coating combined to carbon nanotubes and TiO_2 were prepared by electrophoretic deposition to improve cathode efficiency. The experiments include: (1) Linear scanning voltammetry; (2) Cyclic voltammetry; (3) Contact angle instrument; (4) Scan electron microscope; (5) Decolorization efficiency test of cathode system. These results shown that the electrode prepared by electrophoresis deposition for 5 min has the highest response current and charge capacity of 0.975 mA/cm^2 and 0.052 C, respectively, which contains a minimum contact angle of 31.5 ゚. Meanwhile, the surface has the best coating and the highest reaction rate of 0.022 min^(-1), which is higher than that of 0.007 min^(-1) for SS316L. In summary, this study successfully prepared TiO_2/CNT/SS316L composite electrodes by electrodeposition, which will be helpful for the research of fuel cell electrode in the future.

參考文獻


Brillas, E.(2020).A review on the photoelectro-Fenton process as efficient electrochemical advanced oxidation for wastewater remediation. Treatment with UV light, sunlight, and coupling with conventional and other photo-assisted advanced technologies.Chemosphere.250,126198.
Huggins, T.,Wang, H.,Kearns, J.,Jenkins, P.,Ren, Z. J.(2014).Biochar as a sustainable electrode material for electricity production in microbial fuel cells.Bioresource Technology.157,114-119.
Danilov, M. O.,Melezhyk, A. V.(2006).Carbon nanotubes modified with catalyst—Promising material for fuel cells.Journal of Power Sources.163,376-381.
Chen, Q.,Liu, H.,Xin, Y.,Cheng, X.(2013).TiO2 nanobelts – Effect of calcination temperature on optical, photoelectrochemical and photocatalytic properties.Electrochimica Acta.111,284-291.
Yu, Y.,Yu, J. C.,Yu, J. G.,Kwok, Y. C.,Che, Y. K.,Zhao, J. C.,Ding, L.,Ge, W. K.,Wong, P. K.(2005).Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes.Appl Catalysis A: General.289,186-196.

延伸閱讀