透過您的圖書館登入
IP:18.116.42.143
  • 期刊
  • OpenAccess

以機器視覺分級文心蘭切花之研究

Oncidium cut flower grading with machine vision

摘要


本研究之目的是使用機器視覺技術萃取文心蘭切花之特徵參數,以進行文心蘭切花之分級。本文使用兩種方法對文心蘭切花進行分級。第一種方法係依據文心蘭切花分級標準加以分級,所使用之分級參數有花部長、莖部長及分枝數。第二種方法係使用類神經網路對切花分級,輸入網路的參數有花部投影面積、花部邊界長度、花部長、莖部長、切花中間部分莖粗以及莖部底端莖粗。第一種分級方法之分級結果與人工分級結果比較,相符的程度為72%,而第二種分級方法之分級結果與人工分級比較,相符程度為79%。

並列摘要


The objective of this study is to use digital image processing techniques to extract feature parameters of oncidium cut flowers for grading. Two methods were employed to grade the cut flowers. The first method utilized the length of the flower part, the length of the stem part, and the number of branches to grade the flowers according to the grading criteria of oncidium cut flowers. The second method used an artificial neural network to grade the cut flowers. The projected area of the flower part, the boundary length of the flower part, the length of the flower part, the length of the stem part, and the stem diameters of the cut flower in the middle as well as at the end of the stem were used as the grading input parameters to the neural network. The grading accuracy of the first method was 72% compared with manual grading results, while the grading accuracy was 79% for the second method.

被引用紀錄


邱勝郁(2012)。應用機械視覺於硬碟磁頭表面瑕疵檢測〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2012.00002
許得政(2010)。應用機器視覺搭配類神經網路對CCD sensor作影像對位之研究〔碩士論文,國立中央大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0031-1903201314405739

延伸閱讀