透過您的圖書館登入
IP:3.133.156.156
  • 期刊

高材料使用率之多軸複動化鍛造模組開發研究

The Study and Development of the Horizontal Multi-Ram and Multi-Action Forging Die Set of Hugh Yielding Ratio

摘要


中空鍛造製程即使用水平多軸複動化鍛造成形模組鍛製出具有中空孔之無毛邊鍛品,達到精密、省料及省機械加工之目的。其製程主要用於銅質多軸中空孔管件接頭之產品,具有極大之經濟效益。然而水平多軸複動化鍛造模組結構複雜,設計不易,該技術在業界並不廣泛。本研究以衛浴用四通銅質管件接頭為載具,進行水平分割多軸複動化模組技術之探討與研究,首先收集國內外文獻,加以分析複動化鍛造模組與成形機構設計,結合連桿機構與油壓式閉模鍛造機構,開發水平複動化鍛造模組;並使用DEFORM模擬軟體分析成形中材料流動之情形,設計具四軸之水平複動化鍛造模組。最後進行C2680黃銅材料之熱間鍛造實驗,探討模組之可行性。結果顯示,經DEFORM模擬分析顯示四軸向水平複動化鍛造成形為可行方式,本研究所開發之水平複動化模組可成功地將目標載具鍛造成形,且鍛件之流線顯示均勻無切斷,尺寸合格。在鍛造實驗中,合模力約為150噸,鍛造成形所需之負荷約300噸,模組運作順暢,顯示本研究之空心鍛造製程與水平多軸複動化鍛造成形模組為可行。此一四軸向水平複動化鍛造成形方式,所須材料為1.51kg,比較傳統有毛邊方式之下料重為2.65kg,可節省約0.85kg材料重,約為原下料的32%。

關鍵字

無資料

並列摘要


The objective for making precision forgings and for saving the usage of materials can be reached by using multi-action forging die set to do the core forging process. But the horizontal multi-ram and multi-action forging die set is complex and difficult to design. The processes are primarily applied to the manufacturing of multi-axis cored joint parts. In this study, the brass joint which has four axes is used as the vehicle to investigate the die set of horizontal split and horizontal multi-action forging die set. First, the information of developed multi-action forging die set will be collected and be analyses. Then, the die set is designed and developed by combining a link mechanism m and a hydraulic clamping mechanism. At the same time, the forging simulation software DEFORM is used to analyze the stress and strain in the die as well as the situation of material flow during forging. The optimum conditions of the process will be investigated and established by the simulation results. According to the optimum conditions, the horizontal multi-action forging die set with four rams will be tried. Finally, the feasibility of the die set is investigated by hot forging of forging brass C2680. The results showed that the horizontal multi-action forging with four rams is feasible through the simulation of DEFORM. The design of the horizontal multi-action forging die set in this study is feasible as well. The target vehicles are forged successfully by the developed die set and the flow lines of the forgings are reasonable. The dimensions are conforming to the requirements of the drawings. In the actual forging experiment, the clamping force is set at 150 ton and the total forging load is around 300ton. At the same time, the movement of the die set is smoothly. Therefore, the development of the core forging process and the die set is successfully. Comparing with the traditional flash forging, the horizontal multi-action forging can reduced the materials from 2.65kg to 1.51kg. The materials of 0.85kg can be saved, which is around 32% of the materials in the flash forging process.

並列關鍵字

無資料

延伸閱讀