透過您的圖書館登入
IP:18.117.132.79
  • 期刊
  • OpenAccess

五年級學生運算思維能力與數學學習成就關係之探討

Exploring the Relationships Between Fifth Grade Students' Computational Thinking Ability and Their Mathematics Learning Achievement

摘要


近年來,運算思維(Computational Thinking, CT)已被許多國家列入資訊科技課程標準;許多研究大多聚焦於CT能力的評量、培育課程的研發與學生學習的成效等議題,卻缺乏有關數學學習成就與CT能力兩者之間的關係之探討。鑑此,本研究旨在針對小學五年級學生的CT能力與數學學習成就進行問卷調查,並分析上述兩個變項的關係。因此,本研究開發CT測驗與數學成就測驗,研究樣本為189位自願參加兩項工具施測的小學五年級學生。所有施測資料是透過試題參數分析、信效度分析、相關分析及結構方程模型分析後,才逐漸形塑出研究結果。研究發現:兩項工具的信度與效度堪稱尚可,可以作為評量學生CT能力與數學學習成就的研究工具。從結構方程模型的路徑分析中發現,學生的CT能力可直接預測其在數學學習成就的概念理解、程式執行與解題思考表現。此外,本研究取學生的CT測驗成績與答對題數之數據,將學生分為「高運算思維能力組」與「低運算思維能力組」。並且,高運算思維能力組的學生其運算思維能力可以預測概念理解與解題思考表現;低運算思維能力組的學生其運算思維能力只能預測解題思考表現。

並列摘要


Today, Computational Thinking (CT) is widely considered the essential cognitive skill for problem solving that young generations must acquire to better position themselves to face tomorrow's challenges. However, there was lacking of researches on the relationship between mathematics learning achievement and CT ability. This study focused on Taiwan 5th grade elementary school students' CT ability and mathematics learning achievement by questionnaire and analyzed their relationship. In order to get the goal, we prepared two assessment tools including CT-test and mathematics achievement test. A total of 189 elementary school students who participated in testing were the sample of this study. The classical test theory (CTT), test and item analysis, reliability and validity analysis, pearson correlation analysis, partial least squares-structural equation modeling (PLS-SEM), two steps cluster analysis were used to analyze the data collected in this study. The PLS-SEM analysis found students' CT ability can directly predict three dimensions of mathematics learning achievement including conceptual understanding, procedural knowledge, and problem solving. Cluster analysis was used to divide the sample into groups of similar CT ability. Two groups were identified: higher CT ability group and lower CT ability group. The two groups were significant different from procedural knowledge and problem solving.

參考文獻


吳國良、邱美虹(2012)。高中化學成就測驗的試題類型與考生答題結果分析之研究。科學教育月刊,349,2-19。https://doi.org/10.6216/SEM.201206_(349).0001
胡秋帆、吳正己、林育慈、游志弘(2021)。高中生運算思維測驗發展。數位學習科技期刊,13(1),1-21。https://doi.org/10.3966/2071260X2021011301001
張萬烽(2016)。學習障礙學生自我概念發展之集群分析。特殊教育發展期刊,62,65-78。https://doi.org/10.7034/DSE.201612_(62).0006
曹雅玲(2007)。提升兒童解決數學應用問題的能力。國教新知,54(4),44-50。https://doi.org/10.6701/TEEJ.200712_54(4).0003
黃珮婷、陳慧娟(2016)。大學生未來時間觀與自我調整學習之關係:知覺工具性中介效果檢驗。教育心理學報,47(3),329-354。https://doi.org/10.6251/BEP.20150130

延伸閱讀