透過您的圖書館登入
IP:18.227.111.33
  • 期刊

Multi-objective Optimization of Mixed Membrane Reactors for Autothermal Reforming of Methane

摘要


Autothermal reforming (ATR) of methane, which supplies the heat for endothermic steam reforming by internal combustion of methane, is an important process for synthetic gas production. The axial-distributed feeding of oxygen via a packed bed inert membrane reactor (MR) can reduce the peak temperature and improve the reactor performance. A modified MR, called mixed membrane reactor (MMR), combines permeable membrane tube wall and non-permeable tube wall provides extra degrees of freedom for reactor design and operation. For MR and MMR, this study presents the ternary-objective optimization analysis for maximizing hydrogen production rate, non-combustion selectivity and conversion of methane, using a 1D pseudo-homogeneous reactor model and the NSGA-II algorithm. Compared to MR, MMR can be operated under significantly higher oxygen permeation flux without violating the maximum temperature constraint. The non-combustion selectivity and conversion of methane of MR and MMR are close, however, the hydrogen production rate of MMR can be as high as 200% of MR.

延伸閱讀