透過您的圖書館登入
IP:3.149.214.32
  • 學位論文

甲醇蒸汽重組之薄膜反應器: 單套管反應器之數據回歸與模擬

MEMBRANE REACTOR FOR METHANOL STEAM REFORMING: DATA REGRESSION AND SIMULATION OF A SINGLE-JACKET REACTOR

指導教授 : 洪賑城
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究室長遠的研究目標為,設計一個小型而無額外熱交換器之甲醇蒸汽重組之薄膜反應器以生產純氫氣。本研究之目標為此長遠計劃的初步的步驟,發展單管甲醇蒸汽重組反應器之數學模式,包括本實驗室使用之觸媒動力學數據,以及Pd膜管之滲透參數。 我們使用兩種速率方程式回歸以Pt為促進劑之CuO/ZnO/Cr2O3/ CeO2/Al2O3 觸媒之動力學數據。模式1使用6個參數,平均誤差為0.06349、模式2使用8個參數,平均誤差為0.05036。 一個單管反應器之數學模式已經被發展。Sievert’s定律用來解釋氫氣的滲透,而採用Soave-Redlish-Kwang狀態方程式去估計甲醇與水在高壓下之非理想狀態之逸壓係數。一個福傳語言程式已經被發展用來模擬單管薄膜反應器內所有參數之實驗數值。模擬的結果有助於我們了解各變數設計在氫氣的產生率或氫氣通量之效應,例如甲醇進料量與滲透面積的比值、甲醇進料與觸媒之空間流速比、觸媒重量和滲透參數。

並列摘要


It is a long-term research objective for this laboratory to design a membrane reactor for methanol steam reforming that produces pure hydrogen in a compact size without external heat source. The objective of this study, which is a beginning step of the long-term project, is to develop a mathematical model for a single-jacked membrane reactor for methanol steam reforming with kinetic data of catalyst and permeability of Pd membrane obtained experimentally in this laboratory. The kinetic data over Pt-promoted CuO/ZnO/Cr2O3/CeO2/Al2O3 catalyst obtained in this laboratory were regressed to two models of rate equations. The average errors for model predictions of conversions are 0.06349 for Model 1 which has six parameters and 0.05036 for Model 2 which has eight parameters. A mathematical model for a single-jacked membrane reactor has been developed. Sievert’s law is used for hydrogen permeation and modified Soave-Redlish-Kwang equation of state is adopted to calculate the fugacity coefficients for methanol and water to account for the non-ideality at high pressure. A Fortran program has been established for the simulation of the single-jacked membrane reactor with all the parameters measured in the experiment. The simulation results can help us to understand the effects of design variables, such as load to surface ratio, WHSV, catalyst weight and permeability, on the hydrogen production yield or hydrogen flux.

參考文獻


2. R. E. Buxbaum, “Membrane Reactor Advantages for Methanol Reforming and Similar Reactions,” Separation Science Technology, 34 (1999) 2113–2123.
4. R. E. Buxbaum and A. B. Kinney, “Hydrogen Transport through Tubular Membranes of Palladium-Coated Tantalum and Niobium,” I&EC Research, 35 (1996) 530-537.
5. T. T. Tsotsis, A.M. Champagnie, S. P. Vasileiadis, Z.D. Ziaka and R. G. Minet, “The Enhancement of Reaction Yield through the Use of High Temperature Membrane Reactors,” Sep. Sci. and Tech., 28 (1993) 397-422.
7. A. F. Ghenciu, “Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems,” Current Opinion in Solid State & Materials Science, 6 (2002) 389-399.
8. P. P. Mardilovich, Y. She, Y. H. Ma and M. H. Rei, “Defect-Free Palladium Membranes on Porous Stainless-Steel Support,” AIChE J., 44 (1998) 310-322.

延伸閱讀