透過您的圖書館登入
IP:18.220.9.180
  • 期刊

半導體製程資料特徵萃取與資料挖礦之研究

Semiconductor Manufacturing Data Mining for Clustering and Feature Extraction

摘要


在半導體製造程序中,許多資料會以自動或半自動方式記錄下來。包括產品的基本資料、過站時問與機台紀錄、機台設定參數、測試資料等。由於資料維度與數量龐大且混雜的雜訊等問題,傳統統計分析方法有其限制;而工程師亦往往無法從收集的龐大資料中,迅速有效地察覺可能導致製程異常的原因。本研究目的係分析半導體多維度資料,並以具體實證研究說明,包含製程監控與事故診斷兩大部分:第一部份針對半導體製程晶圓元收測試參數資料的多維度資料,透過人工類神經網路之自我組織映射成圖網路演算法先將資料分群,以發現隱藏於資料中的樣型與良率間的關連性,再以決策樹將類別之特徵以樹狀結構呈現,透過參數表現特徵提供給工程師監控製程變化的決策依據,以改善製程提昇良率。第二部分則針對半導體製程製造測試中的電性功能針測的多維度資料,以良率為目標變數,透過人工類神經網路之自我組織映射成圖網路演算法先將資料分群,以發現隱藏於資料中的樣型,將相同特徵者歸為一類,再由定義之分類作為目標以決策樹將其各分群之特徵以樹狀結構呈現其分類規則。透過綜合資訊的比較縮小診斷範圍,提供給工程師作為事故診斷的決策依據,以快速排除事故提昇良率。

並列摘要


Owing the rise of e-commerce and information technology, a large amount of data has been automatically or semi-automatically collected in modem industry. Decision makers may potentially use the information buried in the raw data to assist their decisions through data mining for possibly identifying the specific patterns of the data. This study proposes data mining procedures for analyzing semiconductor manufacturing data for manufacturing process monitoring and defect diagnosis. In particular, SOM is applied for clustering and decision tree is applied for feature extraction to analyze multi-dimensional semiconductor manufacturing data. We used real data from a fab to conduct two case studies for validation and found that this approach can effectively limit the scope for defect diagnosis and summarize the findings in specific decision rules. We conclude this study with discussions on the results and future research.

參考文獻


Berry, M.,Linoff, G.(1997).Data Mining Techniques for Marketing, Sales and Customer Support.New York, NY:John Wiley & Sons.
Brachman, R. J.,Khabaza, T.,Kloesgen, W.,Piatetsky-Shapiro, G.,Simoudis, E.(1996).Mining business databases.Communications of the ACM.39(11)
Breiman, L.,Friedman, J. H.,Olshen, R. A.,Stone, C. J.(1984).Classification and Regression Trees.International Thomson Publishing.
Bursteinas, B.,Long, J. A.(2000).Proc. 12th IEEE International Conference on Tools with Artificial Intelligence.
Cai, Yudong(1994).Proc. WCNN'94, World Congress on Neural Networks, Volume I.

被引用紀錄


曾冠倫(2017)。以工業4.0為基礎之智慧工廠大數據平台建置〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201700450
陳冠位(2007)。影像處理及類神經網路於晶圓缺陷分析之應用〔碩士論文,元智大學〕。華藝線上圖書館。https://doi.org/10.6838/YZU.2007.00159
Chen, L. F. (2007). 整合約略集合論、支援向量機與決策樹之資料挖礦架構及其個案研究 [doctoral dissertation, National Tsing Hua University]. Airiti Library. https://www.airitilibrary.com/Article/Detail?DocID=U0016-1206200714113710
林國勝(2008)。資料挖礦於生物晶片資料分析之研究〔博士論文,國立清華大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0016-1410200814311624
Hsu, S. C. (2009). 建構萃取半導體製造智慧之架構以提升營運效率及其實證研究 [doctoral dissertation, National Tsing Hua University]. Airiti Library. https://www.airitilibrary.com/Article/Detail?DocID=U0016-2705201013401821

延伸閱讀