透過您的圖書館登入
IP:3.133.144.197
  • 期刊

觀衆對於iPS細胞展示的科技理解與認知

Audience's Technological Understanding and Cognition on the Exhibit of Induced Pluripotent Stem Cells

摘要


現代醫療技術不斷創新,幹細胞治療方式也日漸受到重視。正常情況下,分化後的細胞無法回到原始狀態,因此若要使用胚胎幹細胞來做治療,其來源勢必取自胚胎,這存在著倫理道德上的爭議。這個爭議在日本科學家山中伸彌教授發明「誘導性多功能幹細胞(Induced Pluripotent Stem cell,iPS細胞)」後得以解決,山中伸彌並因此獲得2012年諾貝爾生理醫學獎。iPS細胞的製成是跨領域的科研成果,如何將之轉化成為一般人可以理解的展示,必須考慮專業資料的篩選簡化以及呈現的完整性、引發觀眾學習興趣等。本文以STEAM教育理念作為核心知識分析架構,完成展示轉化後為能得知觀眾參觀後是否促進觀眾對幹細胞及iPS細胞關鍵知識的認知與理解,以及對相關科學研究的應用與期待,並以半結構式訪談進行質性資料收集與分析。研究結果發現,參觀後多數的觀眾對於幹細胞及iPS細胞關鍵知識的理解與認知均有明顯增加。觀眾對幹細胞的認知,主要集中於骨髓移植與臍帶血等方面;參觀後對於幹細胞的分化與複製觀念多有所提升。在iPS細胞關鍵知識的理解上,集中在山中伸彌採用的刪去法、體細胞轉變為幹細胞、4個關鍵基因等面向,而影響觀眾對於展示內容理解程度的因素則包含內容適當的簡化拆解、相關知識背景的具備、與觀眾生活經驗的連結等。對於相關的科學研究的應用與期待上,著重在器官修復及抗老化等醫療應用、解決排斥問題等,並認同多一種胚胎幹細胞來源的價值。

並列摘要


With advances in medical technologies, stem cell therapy has been receiving increasing attention. Under normal circumstances, differentiated cells cannot resume their original states. Therefore, for embryonic stem cell therapy, the cells must be obtained from embryos, the ethics and morality of which were a debated topic. The debate was later resolved after a Japanese scientist, Professor Shinya Yamanaka, invented induced pluripotent stem (iPS) cell; for which Yamanaka won the 2012 Nobel Prize in Physiology or Medicine. The production of iPS cells involves interdisciplinary scientific research efforts. Presenting such efforts in a way understandable to the general public requires the selection and simplification of technical data without sacrificing the completeness of information, and the provision of content appealing to the audience. The science-technology-engineering-art-mathematics (STEAM) education philosophy was employed as the core framework for knowledge analysis. To determine whether the audience, after visiting the exhibit, improved their understanding and cognition of the key knowledge of stem cells and iPS cells or their outlook for the application of relevant scientific research, semistructured interviews were conducted for qualitative data collection and analysis. According to the results, most audience members had substantially increased understanding of the key knowledge of stem cells and iPS cells after their visit. The basic knowledge the audience had of stem cells before visits predominantly concerned bone marrow transplantation and cord blood; after visits, most of them exhibited better understanding of the concepts of stem cell differentiation and replication. Regarding the key knowledge of iPS cells, the audience's understanding was focused on the elimination approach adopted by Yamanaka, conversion of somatic cells into stem cells, and the four key genes. Factors that affected how well the audience understood the exhibit included the appropriate simplification and breakdown of content, having prior knowledge or education background related to the subject, and having relevant life experiences. The audience's outlook for the application of related scientific research mostly concerned medical applications, such as the restoration of organ functions and antiaging, solving rejection issues, and providing an additional source of embryonic stem cells.

參考文獻


湯維玲(2019)。探究美國 STEM 與 STEAM 教育的發展。課程與教學季刊,22(2),49-78。doi: 10.6384/CIQ.201904_22(2).0003
張曉琪(2019)。美國跨領域教學趨勢:從 STEM 到 STEAM 的轉化。教育研究月刊,300,36-46。doi: 10.3966/168063602019040300003
趙慧臣、陸曉婷(2016)。開展 STEAM 教育,提高學生創新能力-訪美國 STEAM 教育知名學者格雷特‧亞克門教授。開放教育研究,22(5),4-10。doi: 10.13966/j.cnki.kfjyyj.2016.05.001
Gage, F. H., & Verma, I. M. (2003). Stem cells at the dawn of the 21st century. Proceedings of the National Academy of Sciences of the United States of America, 100, 11817-11818. doi: 10.1073/pnas.1834433100
Jung, J., Bauer, G., & Nolta, J. A. (2012). Concise review: Induced pluripotent stem cell-derived mesenchymal stem cells: Progress toward safe clinical products. Stem Cells, 30, 42-47. doi: 10.1002/stem.727

延伸閱讀