透過您的圖書館登入
IP:18.188.218.184
  • 期刊

System-Level Performance Analysis of Integrated Thermal Plasma Reformer and SOFC/GT System Using Greenhouse Gases as Fuels

使用溫室氣體爲燃料在整合熱電漿重組器與固態氧化物燃料電池/蒸氣渦輪機的系統層次效能分析

摘要


本論文以系統的觀點來分析一個整合熱電漿重組器(thermal plasma reformer, TPR)和混合固態氧化物燃料電池/蒸氣渦輪機(hybrid solid oxide fuel cell and gas turbine, SOFC/GT)的燃料電池系統,運用甲烷、二氧化碳等溫室氣體爲燃料的系統效能。熱電漿重組器本身是非觸媒重組,對於以二氧化碳進行天然氣乾重組不會有硫毒化及碳沈積導致觸媒效能降低的問題;重組混合氣具有較低的氫/一氧化碳比率,適合供應後段的固態氧化物燃料電池/蒸氣渦輪機混合系統當成燃料。從理論模擬分析,整合熱電漿重組器和混合固態氧化物燃料電池/蒸氣渦輪機的燃料電池系統最佳工作溫度爲800℃、二氧化碳/甲烷(CO2/CH4)進料草耳比值爲1.25,整體系統效能最高可以達到48%。從環境保護的觀點來看,二氧化碳再利用來重組甲烷產生一氧化碳與氫氣當成燃料電池的燃料,有助於溫室氣體減量。

並列摘要


This paper presents performance analysis of a fuel cell system (FCS) consisting of a thermal plasma reformer (TPR) and a hybrid solid oxide fuel cell and gas turbine (SOFC/GT) system from a system-level viewpoint. This paper also addresses the results of using greenhouse gases (CH4 and CO2) as feedstock to the system. Being non-catalytic reforming, the thermal plasma reforming technique does not pose the problems of sulfur poisoning and carbon deposition. With a lower ratio of H2/CO in the reformate stream, the thermal plasma reforming technique is much preferred to a hybrid SOFC/GT system that exhibits low sensitivity to CO. Through the simulation and analysis of GCtool software, the selected operating condition for the integrated TPR and SOFC/GT system was set at a temperature of 800℃ and a CO2/CH4 mole flow rate ratio of 1.25. Additionally, the estimated efficiency of the overall system can achieve up to 48% without considering heat loss as a factor. The application of CO2 reuse contributes to CO fuel production and the reduction of greenhouse emissions from an environmental perspective.

延伸閱讀