透過您的圖書館登入
IP:13.59.103.67
  • 期刊
  • OpenAccess

Comparison and Assessment of a Multiple Optimal Coordinated Design Based on PSS and the STATCOM Device for Damping Power System Oscillations

並列摘要


The aim of this study is to present a comprehensive comparison and assessment of the damping function improvement for the multiple damping stabilizers using the simultaneously coordinated design based on Power System Stabilizer (PSS) and Static synchronous Compensator (STATCOM). In electrical power system, the STATCOM device is used to support bus voltage by compensating reactive power; it is also capable of enhancing the stability of the power system by the adding a supplementary damping stabilizer to the internal AC or DC voltage control channel of the STATCOM inputs to serve as a Power Oscillation Damping (POD) controller. Simultaneous coordination can be performed in different ways. First, the dual-coordinated design between PSS and STATCOM AC-POD stabilizer or DC-POD stabilizer is used. Then, coordination between the AC and DC STATCOM-based POD stabilizers are arranged in a single STATCOM device without PSS. Second, the coordinated design has been extended to triple multiple stabilizers among PSS, the AC-based POD and the DC-based POD in a Single Machine Infinite Bus (SMIB). The parameters of the multiple stabilizers have been tuned in the coordinated design by using a Chaotic Particle Swarm Optimization (CPSO) algorithm that optimized the given eigenvalue-based objective function. The simulation results show that the dual-coordinated design provide satisfactory damping performance over the individual control responses. Furthermore, the-triple coordinated design has been shown to be more effective in damping oscillations than the dual damping stabilizers.

延伸閱讀