透過您的圖書館登入
IP:3.15.5.183
  • 期刊

以光電化學系統活化過硫酸鹽降解三氯乙烯

Degradation of Trichloroethylene by Photoelectrochemically Activated Persulfate

摘要


本研究成功製備出大尺寸的二氧化鈦奈米管陣列(titanium nanotube arrays, TNAs),再搭配方波伏安電化學沉積法製備出p-n型異質結構之氧化銅/二氧化鈦奈米管陣列(CuO/TNAs)運用於光電化學(photoelectrochemical, PEC)系統中活化過硫酸鹽降解三氯乙烯(trichloroethylene, TCE)。研究中使用scanning electron microscope(SEM)、energy dispersive X-ray spectrometry(EDS)、ultraviolet-visible diffuse reflectance spectroscopic(UV-vis DRS)、high resolution X-ray diffraction(XRD)、X-ray photoelectron spectroscopy(XPS)物性分析證實成功合成CuO/TNAs和其銅之含量。從光電流測試結果顯示改質過後之CuO/TNAs的電流更可提升至104.78 mA。活化過硫酸鹽實驗中,以TNAs_(-93-1)和CuO/TNAs作為工作電極分別在3小時內可活化65.1%及83.8%的過硫酸鹽。此外,三氯乙烯的降解在陽極室中比在陰極室中更有效,以光解、光催化和光電化學系統下進行降解三氯乙烯之比較,結果顯示在光電化學系統下以CuO/TNAs作為工作電極活化過硫酸鹽降解三氯乙烯之效果最佳,光電化學系統所生成之氫氧自由基(.OH)成功結合活化過硫酸鹽所生成之硫酸根自由基(SO_4^-.)對降解三氯乙烯產生協同作用,提升降解效率。

並列摘要


In this study, large titanium nanotube arrays (TNAs) were successfully prepared by anodizing oxidation. Copper oxide deposited titanium nanotube arrays (CuO/TNAs), a p-n-type hetero-structure, was synthesized using a square wave voltammetry electrochemical deposition method (SWVE). Scanning electron microscope (SEM), energy dispersive X-ray spectrometry (EDS), ultraviolet-visible diffuse reflection spectroscopy (UV-vis DRS), high resolution X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to investigate the physical and chemical properties of CuO/TNAs. The photocurrent of modified CuO/TNAs increased to 104.78 mA, which is higher than that of TNAs_(-93-1) (55.64 mA). Using TNAs and CuO/TNAs as working electrodes, 65.1% and 83.8% of persulfate can be photoelectrochemical (PEC) activated, respectively. Trichloroethylene (TCE) degradation is more effective in the anodic chamber than in the cathodic chamber. A comparison of the effect of photodegradation (P), photocatalysis (PC), and PEC systems on TCE degradation was conducted in this study. Among the three, PEC was the most effective way to degrade TCE, using CuO/TNAs as the working electrode. This is due to the synergistic effect of hydroxyl radicals (.OH) and sulfate radicals (SO_4^-.) from the persulfate electrolyte used in a PEC system.

參考文獻


Berrelleza-Valdez, F., Parades-Aguilar, J., Peña-Limón, C.E., Certucha-Barragán, M.T., Gámez-Meza, N., Serrano-Palacios, D., Medina-Juárez, L.A., Calderón, K., (2019) A novel process of the isolation of nitrifying bacteria and their development in two different natural lab-scale packed-bed bioreactors for trichloroethylene bioremediation. Journal of Environmental Management, 241, 211-218. doi:10.1016/j.jenvman.2019.04.037
Bourg, A.C., Mouvet, C., Lerner, D.N., (1992) A review of the attenuation of trichloroethylene in soils and aquifers. Quarterly Journal of Engineering Geology and Hydrogeology, 25, 359-370. doi:10.1144/GSL.QJEG.1992.025.04.10
Chadwick, S.S., (1988) Ullmann’s encyclopedia of industrial chemistry. Reference Services Review, 16, 31-34. doi:10.1108/eb049034
Chen, G., Hoag, G.E., Chedda, P., Nadim, F., Woody B.A., Dobbs, G.M., (2001) The mechanism and applicability of in situ oxidation of trichloroethylene with Fenton’s reagent. Journal of Hazardous Materials, 87, 171-186. doi:10.1016/S0304-3894(01)00263-1
Deng, J., Wang, L., Lou, Z., Zhang, T., (2014) Design of CuO–TiO2 heterostructure nanofibers and their sensing performance. Journal of Materials Chemistry A, 2, 9030-9034. doi:10.1039/C4TA00160E

延伸閱讀