透過您的圖書館登入
IP:3.19.31.73
  • 期刊
  • OpenAccess

On Quantum Computers and Artificial Neural Networks

並列摘要


Quantum computer science in combination with paradigms from computational neuroscience, specifically those from the field of artificial neural networks, seems to be promising for providing an outlook on a possible future of artificial intelligence. Within this elaboration, a quantum artificial neural network not only apportioning effects from quantum mechanics simulated on a von Neumann computer is proposed, but indeed for being processed on a quantum computer. Sooner or later quantum computers will replace classical von Neumann machines, which has been the motivation for this research. Although the proposed quantum artificial neural network is a classical feed forward one making use of quantum mechanical effects, it has, according to its novelty and otherness, been dedicated an own paper. Training such can only be simulated on von Neumann machines, which is pretty slow and not practically applicable (but nonetheless required for proofing the theorem), although the latter ones may be used to simulate an environment suitable for quantum computation. This is what has been realized during the SHOCID (Neukart, 2010) project for showing and proofing the advantages of quantum computers for processing artificial neural networks.

延伸閱讀