透過您的圖書館登入
IP:3.142.196.27
  • 期刊

印刷電路板之循環物料作為化學迴路空氣分離材料之應用

Application of recycled printed circuit board as the material for chemical looping air separation

摘要


本研究利用印刷電路板產業中的銅系工業循環物料,取代傳統高價格以化學品製備的氧化銅,作為化學迴路空氣分離技術的材料,預期可達到降低成本,提升技術競爭力的優勢。化學迴路空氣分離為化學迴路程序延伸且新興之應用,藉由高溫不同氧分壓下金屬氧化物的相變化,可促使氧氣自發的於釋氧反應中釋出;釋出氧氣後的金屬氧化物並可通過氧化反應抓取空氣中的氧氣,回復其氧化態。而藉由上述不斷循環的氧化釋氧反應,便可達到分離空氣達到產製氧氣的效益。本研究除對印刷電路板回收物料的粉末特性進行分析,更進一步評估其應用於化學迴路空氣分離之可行性。評估結果包含成份與微結構分析、多迴圈氧化釋氧反應及其動力學分析,以及尾氣氣體成份分析等。結果顯示,此循環物料除了具備成本優勢外,於長時間高溫氧化釋氧反應下,仍保有良好釋氧率,極具作為化學迴路空氣分離材料之潛力。

並列摘要


Copper-based by-product (copper scrap) from printed circuit board industry, instead of copper oxide, is adopted as oxygen carrier material. It is expected to achieve the advantages of cost reduction and strengthening of competitiveness compared to other air separation technologies. Chemical looping air separation (CLAS) is an emerging application of chemical looping processes. By altering the phase transformation of metal oxide called oxygen carrier, oxygen can be released spontaneously within the reduction reaction. Reduced metal oxide can be oxidized to reclaim its oxygen by reacting with oxygen in air during oxidization reaction. Air separation can be given by repeating oxidation-reduction processes. The material property of copper scrap has been analyzed in present study. Furthermore, feasibility of the application of copper scrap for chemical looping air separation was evaluated. Measurement of composition and microstructure, reactivity test, multiple redox reaction kinetic analysis, and flue gas analysis were conducted in this study. The results have shown that copper scrap has full potential to be utilized as oxygen carrier for CLAS process with its cost advantage and moderate oxygen-releasing capability after long-term high-temperature reaction.

延伸閱讀