透過您的圖書館登入
IP:3.133.90.25
  • 學位論文

互補金氧半導體多級差動式振盪器能量結合信號源

CMOS Multiple-Element Differential Power-Combining Oscillators

指導教授 : 莊晴光

摘要


本篇論文提出一個在K-頻段的能量結合結構。此結構是以多個馬爾尚平衡不平衡轉換器(Marchand balun)形成的區段以串聯的方式組成並能夠結合多組平衡信號到一個不平衡信號。另外以主動元件組成的電晶體交叉耦合對(cross-coupled pair)結合此多個平衡不平衡轉換器結構形成了多級差動式振盪器能量結合信號源。此中能量結合的機制使用了Y和S參數來分析探討。此多級差動式振盪器實作在0.13微米的互補式金氧半導體製程技術,展現了整合於單質晶片的能力。一個電晶體交叉耦合對和兩個的設計都有進行量測,最佳量測結果顯示達成了76.0%的能量結合效率。 此能量結合效率是藉由比較一個單元的設計和兩個單元的振盪器設計而來。一個單元的設計振盪頻率操作在25.29 GHz,輸出能量為3.32 dBm,直流轉無線電頻率效率16.96%,其核心電路大小為280 um × 230 um. 二個單元的設計振盪頻率操作在25.56 GHz,輸出能量為5.14 dBm,直流轉無線電頻率效率12.03%,其核心電路大小為280 um × 430 um。 在第二章進行能量結合結構被動元件部分的分析。本文提出的能量結合結構是以多區段的耦合傳輸線結合,因此耦合傳輸線的對稱和非對稱模型在這裡探討並討論其在互補式金氧半導體技術中的使用方式。互補式金氧半導體合成傳輸線也在此章進行討論。而基於傳輸線模型的Y和S參數分析了證明此結構中每個單元形成的延伸埠馬爾尚平衡不平衡轉換器的功能,再藉此證明提出的能量結合結構確實能結合多對差動信號的能量。同時在此結構中達成能量結合時的狀態條件,是跟延伸振盪技術(extended resonance technique)中展示的為同樣的條件。 第三章探討提出的能量結合結構聯結主動元件而形成的多級差動式振盪器設計。首先證實了在此結構中,主動元件組成的電晶體交叉耦合對的小信號能量結合是可行的。另外使用了簡化模型來探討此多級差動式振盪器能量結合信號源的振盪條件和相對應的設計參數。 本篇論文發展的分析方法可以預測當傳輸線的品質因素(quality factor)提高時,此結構的能量結合效率同時會有提升。將此能量結合結構興其他已發表之多級振盪器能量結合信號源一同比較,可以發現本篇論文提出的振盪器在直流轉無線電頻率效率和電路的縮小化上都具有優勢。此結構展現了在單晶積體電路中與其他元件整合並且能夠產生高能量輸出的能力。

並列摘要


A power combining structure at K-band is proposed. The proposed structure, consisted of multi-section of Marchand baluns in series configuration, combines multiple pairs of balanced signals into a single unbalanced port. The active devices, in differential cross-coupled pair configuration, are then combined with the multi-balun structure forming the multiple element oscillator. The power combining mechanism is investigated through Y- and S-parameters. The power combination oscillators are implemented in 0.13-um complementary-metal-oxide-semiconductor (CMOS) technology, demonstrating the ability of monolithic integration. One and two cross-coupled-pair design of oscillator are measured. Experiment results for the oscillators are presented, showing maximum power combining efficiency of 76.0%. The power combining efficiency is obtained by comparing the one- and two-cell design of oscillator. For the one-cell design, the oscillation frequency is 25.29 GHz and the output power is 3.32 dBm with high DC-to-RF efficiency of 16.96%. The core area of the circuit is 280 um × 230 um. For the two-cell design, the oscillation frequency is 25.56 GHz and the output power is 5.14 dBm with high DC-to-RF efficiency of 12.03%. The core area of the circuit is 280 um × 430 um. The analysis of the passive part of the combining structure shows in Chapter 2. The proposed power-combining structure is composed of multi-section of coupled lines. The symmetric and asymmetric coupled-lines models are discussed and used in the CMOS technology. The CMOS synthetic transmission line also called complementary- conducting-strip transmission lines (CCS TLs) is discussed. The analysis of the proposed structure using Y- and S-parameters shows the power-combining of multi-pair differential signal. The extended-port Marchand balun is presented as the unit-cell of the proposed power-combining structure. The same power-combining conditions comparing to extended resonance technique are mentioned. Chapter 3 presents the combination of the power-combining structure with active devices forming the multiple-element oscillator. The small-signal power-combining of the active cross-coupled-pair circuit is present, firstly. The oscillation conditions and design parameters of the power-combining oscillators are analyzed by using the simplified models of the circuits. The methodology developed in this dissertation predicts that higher power combining efficiency can be achieved by using transmission lines of higher Q-factor. Compared with published multiple-element power-combining oscillators, the proposed oscillators have high DC-to-RF efficiency and small circuit sizes. This structure presents abilities of high output power and integration with other monolithic integrated circuit components.

參考文獻


[2] K. J. Russell, “Microwave power combining techniques,” IEEE Trans. Microw. Theory Tech., vol. MTT-27, no. 5, pp. 472-478, May 1979.
[4] P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 10, pp. 2438-2447, Oct. 2004.
[5] Kenneth K. O., “Affordable terahertz technology,” IEEE Microw. Mag., pp. 113-116, May, 2009.
[6] K. Kurokawa and F. M. Magalhaes, “An X-band 10-Watt multiple-IMPATT oscillator,” Proc. IEEE, vol. 59, no. 1, pp. 102-103, Jan. 1971.
[7] K. Kurokawa, “The single-cavity multiple-deivce oscillator,” IEEE Trans. Microw. Theory Tech., vol. MTT-19, no. 10, pp. 793-801, Oct. 1971.

延伸閱讀