透過您的圖書館登入
IP:3.15.197.123
  • 學位論文

設備物之半主動隔震系統控制與可靠度分析

Performance and Reliability Analysis of Semi-Active Equipment Isolation System

指導教授 : 羅俊雄

摘要


由於台灣位處地震帶,除卻零星的小地震之外,較大的災害如331、921等大地震。這類自然的災難對於重要的非結構性設備,包含醫院中的救命維生設備、斷路器、電算機、高技術檢測儀表等敏感的儀器而言,皆是甚大的影響。而這些設備物的損壞也將在經濟上造成嚴重以及不可彌補的損失。 基於上述的理由,而發展出新一代的控制理論和策略,並為這些非結構性設備提供所需要的隔震能力。本文的目標在研究隔震系統對於半主動控制和被動控制在地震作用下的成效。在實際試驗之前先透過數值模擬來評估所使用的控制法則之適用性,使用的數值範例有:(1) 3-story steel frame with equipment on 1st floor (2) Seismic Response control of Bridge-Girder System。接著在國家地震中心建構一棟三層樓鋼結構的試驗體,其設備層設置於一樓樓板之上,並且在樓板和設備層間放置磁流變阻尼器和滑移滾動鐘擺隔震系統,然後在振動台上實際試驗。 試驗中使用的半主動控制理論有Decentralized Sliding Mode Control (DSMC)和LQR control。而被動控制(Passive on和Passive off)將在後續的實驗分析中當作一個參考的依據。 最後,利用可靠性分析來發展機率式地震需求曲線(Probabilistic Seismic Demand Curves),在此分析分為兩個部分來進行,首先是機率地震危害度分析,其次再針對所使用的控制系統進行模擬評估,若以研究中所做的控制試驗為例,則可決定設備層最大加速度反應的超越機率。

並列摘要


Critical non-structural equipment, including life-saving equipment in hospitals, circuit breakers, computers, high technology instrumentations, etc., are venerable to strong earthquakes, and the failure of these equipments may result in a heavy economic loss. In this connection, innovative control systems and strategies are needed for their seismic protections. The purpose of this thesis is to investigate performance evaluation of passive and semi-active control in the equipment isolation system for earthquake protection. Through shaking table tests of a 3-story steel frame with equipment on the first floor, a Magneto-Rheological (MR) damper together with a sliding rolling pendulum isolation system is placed between the equipment and floor to reduce the vibration of the equipment. Various control algorithms are used for these semi-active control studies, including the decentralized sliding mode control (DSMC) and LQR control. The passive-on and passive-off control of MR damper is used as a reference for the discussion on the control effectiveness. Finally, the reliability analysis for the development of probabilistic seismic demand curves is used to determine the probability of the equipment response measure.

參考文獻


1. Dyke, S. J., Spencer, B. F., Sain, M. K., and Carlson J. D., “Modeling and Control of Magnetroheological dampers for seismic response reduction”, Smart Materials and Structures, 5, 1996, 565-575.
2. Spencer BF, Dyke SJ, Sain MK and Carlson JD, “Phenomenological model for magnettorheological dampers”, Journal of Engineering Mechanics (ASCE) 1997; 123:230-239
3. Jalili, N. and Fallahi, B., “Design and Dynamic Analysis of an Adjustable Inertia Absorber for Semiactive Structural Vibration Attenuation”, ASCE, Journal of Engineering Mechanics, 128, 12, 2002,1342-1348.
4. Stanway, R., Sproston, J. L., and Stevens, N. G., “Non-linear Modeling of an Electro-rheological vibration damper”, Journal of Electrostatics, 20, 1987,167-184.
5. Masri, S. F., Kumar, R., and Ehrgott, R. C., “Modeling and control of an electrorheological device for structural control applications”, Smart Materials and Structures, 4, 1995, A121-A131.

延伸閱讀