透過您的圖書館登入
IP:3.129.23.30
  • 學位論文

質譜儀新技術的開發及其在病毒與細胞的分析

Novel Mass Spectrometry Technology Development for Virus/nanoparticle and Cell/microparticle Analysis

指導教授 : 陳力騏
共同指導教授 : 陳仲瑄(Chung-Hsuan Chen)

摘要


近年來,質譜技術已成功擴展到尺度小於奈米的巨大有機與生物分子的偵測,例如:巨大蛋白質聚合物、有機聚合物等,為了針對量測各種不同的巨大分子衍伸發展出各式的質譜技術。但是尺度介於奈米至微米之間的粒子,其質量範圍約為107 ~ 1016 Da,例如:病毒、細胞等,對於質譜學的探測而言,是一個很艱難的挑戰。本論文目的在研究開發直接且快速量測奈米與微米粒子之新穎質譜技術。第一章節中,介紹傳統質譜學的種類與技術。第二章節中,我們闡述為了直接且快速量測細胞與微米顆粒的質量分佈而自行開發的雷射激發音波脫附游離源(laser-induced acoustic desorption, LIAD)、頻率掃描式離子阱及電荷偵測器,這些技術的整合使細胞與微米顆粒質量分佈之偵測更有效率。並將其應用於不同類型的細胞鑑定與定量分析細胞吞噬奈米/微米粒子的數量,未來可將此技術應用於奈米/微米粒子在藥物傳遞的研究。第三章節中,我們開發對病毒質量量測的技術。病毒與奈米顆粒因為體積比細胞小,表面積能攜帶的電荷數相對很少,加上我們開發的電荷偵測器約有500個電子的雜訊,所以要直接量測單一病毒的質譜訊號是不可行的。另外,病毒相較於小分子的飛行速度慢,也無法撞擊出二次電子或離子來做偵測。最後,我們利用相位固定技術累積增加離子阱捕捉的數量,讓相同電荷數的粒子同時拋出,增加其總電荷數以利電荷偵測器感應。得到的圖譜再利用類似電灑脫附質譜儀(ESI-MS)的分析方法,將單一病毒質量成功地定義出來。基於我們開發的細胞與病毒偵測之質譜技術,讓整個質譜儀的偵測範圍可以從單一原子(1 Da)到單一細胞(1016 Da),可以說是質譜學的一大躍進。

並列摘要


Recently, mass spectrometry was extended to detect large organic- and bio-particles in sub-nano scale. In this work, different novel technologies have been developed to aim at the detection of even larger organic- and bio-particles, such as cells/microparticles and virus/nanoparticles. The sizes ranging from nano- to micro-scale are very difficult to detect by conventional mass spectrometry. In chapter I, I give the brief introduction on the technology development. Some future perspectives on the applications are also included. In chapter II, laser induced acoustic desorption (LIAD) to desorb cells and microparticles inside a quadrupole ion trap is presented. Measurements of the masses of mammalian and poultry erythrocytes, organic microparticle and cells were achieved by the combination of LIAD frequency scanning ion trap and charge detection into one facility. The mass distributions of these particles were also determined. For virus and nanoparticles, the number of charges on each particle is too low to be accurately determined by the current charge detector. The detection of virions/nanoparticles directly by a charge amplification detector is also not feasible due to the low velocities of these nanoparticles. A novel approach was developed based on the simultaneous measurement of different sizes and different number of charges of each nanoparticle to derive the mass of nanoparticles. The details are presented in chapter III. Due to the aforementioned achievements, mass spectrometry can now be used to detect the mass region from atom to cell.

並列關鍵字

Mass Spectrometry LIAD Virus Cell Nanoparticle Microparticle

參考文獻


Aksenov, A. and M. Bier. 2008. The analysis of polystyrene and polystyrene aggregates into the mega dalton mass range by cryodetection MALDI TOF MS. Journal of the American Society for Mass Spectrometry 19:219-230.
Aksenov, A. A. and M. E. Bier. 2008. The Analysis of Polystyrene and Polystyrene Aggregates into the Mega Dalton Mass Range by Cryodetection MALDI TOF MS. Journal of the American Society for Mass Spectrometry 19:219-230.
Allen, J. S. 1939. The Detection of Single Positive Ions, Electrons and Photons by a Secondary Electron Multiplier. Physical Review 55:966-971.
Allen, T. M. and P. R. Cullis. 2013. Liposomal drug delivery systems: From concept to clinical applications. Advanced Drug Delivery Reviews 65:36-48.
Aoyama, Y., T. Kanamori, T. Nakai, T. Sasaki, S. Horiuchi, S. Sando and T. Niidome. 2003. Artificial Viruses and Their Application to Gene Delivery. Size-Controlled Gene Coating with Glycocluster Nanoparticles. Journal of the American Chemical Society 125:3455-3457.

延伸閱讀