透過您的圖書館登入
IP:3.144.230.82
  • 學位論文

新穎電子予體-受體共聚合物暨奈米合金粒子於 高分子異質接面太陽能電池之合成與應用

Synthesis of Novel Donor-Acceptor-Type Copolymers Coupled with Nanoalloys in Bulk-Heterojunction Polymer Solar Cell Applications

指導教授 : 周必泰

摘要


此論文將探討兩大主題-(1)新穎電子予體-受體有機共軛高分子材料,(2)具表面電漿與光散射效應之無機合金奈米粒子,於異質接面光伏打電池之應用。第一章討論我們自行設計並合成的電子予體-受體共軛高分子,簡稱為PBDT-TFQ,其單體包含benzodithiophene和quinoxaline。最大特色在於quinoxaline端引入兩個氟原子,有效降低 PBDT-TFQ 的HOMO及LUMO之能階,使其形成與PCBM更加匹配之能階位置,並縮短其HOMO及LUMO間的能隙差,得到吸光波段可達800 nm的中度能隙材料。我們針對兩種不同分子量的PBDT-TFQ作一系列分析,並得到高分子量的PBDT-TFQ呈現許多優勢。其最佳化元件效率為8.0%,最終由工研院認證為7.3%。第二章中,我們於有機相合成了大型AuAg合金奈米粒子,其平均粒徑達到20-30 nm,可具有一定的侷域性表面電漿共振(LSPR)及光散射效應現象。為做一詳細討論,本章節合成了Au、Ag、Au11Ag89和Au28Ag72四種不同比例的奈米粒子做比較。我們在P3HT:PCBM混合膜內加入不同比例的奈米粒子,結果顯示,加入1wt-% Au11Ag89的元件中,其短路電流(Jsc)、填充因子(FF)及光電轉換效率(PCE),相對於P3HT:PCBM標準元件都有明顯的增加。我們從光譜量測、能階圖和表面形態等各個面向作分析,得到光散射效應是提高效率的最主要因素。最後一章我們利用於UV-vis波段無特徵吸收的PtNi合金奈米粒子,使其僅提供光散射效應。此外,我們同時探討不同形狀的奈米粒子對於元件特性的影響,並合成出海膽狀(multipods)和球狀(nanoparticles)兩種奈米粒子。其元件結果顯示,multipods提昇元件效率的能力明顯優於nanoparticles。後續的分析證明,PtNi不僅有明顯的光散射效應,也能有效減少電洞傳遞至陽極的能障,有助於電子電洞的分離及收集。

並列摘要


This paper will explore two themes - (1) novel electron donor-acceptor conjugated organic polymer materials, (2) with a surface plasmon and the light scattering effect of inorganic alloy nanoparticles in bulk-heterojunction photovoltaic cells application. The first chapter discusses our design and synthesis of donor-acceptor conjugated polymer, referred to as PBDT-TFQ, its monomer containing electron-rich benzodithiophene and electron-deficient quinoxaline. The most feature is the introduction of two fluorine atoms on the quinoxaline, effectively reducing the HOMO and the LUMO energy level of PBDT-TFQ, to form a better match with the energy level of PCBM. Also, it can decrease the HOMO and LUMO energy gap of PBDT-TFQ, getting an aborption band up to 800 nm, which is a moderate-bandgap materials. We focused on two different molecular weight of PBDT-TFQ for a series of analyzes, and got that the higher molecular weight of PBDT-TFQ presents many advantages. They optimized device efficiency was 8.0%, and further final certification by the ITRI was 7.3%. In the second chapter, we synthsized large AuAg alloy nanoparticles having an average particle size of 20-30 nm in organic solvents, which can have some localized surface plasmon resonance (LSPR) and light scattering effect. To make a more detailed discussion, we synthesized four different ratio nanoparticles which are Au, Ag, Au11Ag89 and Au28Ag72, respectively. We added them within P3HT: PCBM blend films with different mixing ratio. The results showed that the device with introducing of 1wt-% Au11Ag89 has significantly increased in short-circuit current (Jsc), fill factor (FF) and power conversion efficiency (PCE), relatived to the P3HT:PCBM standard device. We analysed for several aspects, including the spectra, the energy level diagram and the surface morphology, etc. Finally, we assumed that light scattering effect is the most important factor to improve efficiency. The final chapter we used PtNi alloy nanocrystals which have no absorption band in UV-vis region,and it provide only light scattering effect. In addition, we also explore the different shapes of nanocrystals on device characteristics. Urchin-like (multipods) and spherical (nanoparticles) were used in P3HT:PCBM devices. The devices’ results showed that multipods improve device efficiency were significantly superior to nanoparticles. Subsequent analysis showed that PtNi can also effectively reduce the hole injection barrier, help charge transfer and further charge collection on electrode.

參考文獻


(1) (a) Thompson, B. C.; Frechet, J. M. J. Angew. Chem. Int. Ed. 2008, 47, 58-77. (b) Price, S. C.; Stuart, A. C.; Yang, L.; Zhou, H.; You, W. J. Am. Chem. Soc. 2011, 133, 4625-4631. (c) Li, G.; Zhu, R.; Yang, Y. Nat. Photonics 2012, 6, 153-161. (d) Muller, C.; Wang, E.; Andersson, L. M.; Tvingstedt, K.; Zhou, Y.; Andersson, M. R.; Inganas, O. Adv. Funct. Mater. 2010, 20, 2124-2131. (e) Lee, D.; Hubijar, E.; Kalaw, G. J. D.; Ferraris, J. P. Chem. Mater. 2012, 24, 2534-2540. (f) Duan, R.; Ye, L.; Guo, X.; Huang, Y.; Wang P.; Zhang, S.; Zhang, J.; Huo, L.; Hou, J. Macromolecules 2012, 45, 3032-3038.
(3) (a) Son, H. J.; Wang, W.; Xu, T.; Liang, Y.; Wu, Y.; Li, G.; Yu, L. J. Am. Chem. Soc. 2011, 133, 1885-1894. (b) Huo, L.; Guo, X.; Zhang, S.; Li, Y.; Hou, J. Macromolecules 2011, 44, 4035-4037. (c) Tong, M.; Cho, S.; Rogers, J. T.; Schmidt, K.; Hsu, B. B. Y.; Moses, D.; Coffin, R. C.; Kramer, E. J.; Bazan, G. C.; Heeger, A. J. Adv. Funct. Mater. 2010, 20, 3959-3965. (d) Subramaniyan, S.; Xin, H.; Kim, F. S.; Jenekhe, S. A. Macromolecules 2011, 44, 6245-6248. (e) Chu, T.-Y.; Lu, J.; Beaupre, S.; Zhang, Y.; Pouliot, J.-R.; Zhou, J.; Najari, A.; Leclerc, M.; Tao, Y. Adv. Funct. Mater. 2012, 22, 2345-2351.
(7) (a) Peet, J.; Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger, A. J.; Bazan, G. C. Nat. Mater. 2007, 6, 497-500. (b) Wang, D. H.; Kim, D. Y.; Choi, K. W.; Seo, J. H.; Im, S. H.; Park, J. H.; Park, O O.; Heeger, A. J. Angew. Chem. Int. Ed. 2011, 50, 5519-5523. (c) Kim, Y. H.; Sachse, C.; Machala, M. L.; May, C.; Muller-Meskamp, L.; Leo, K. Adv. Funct. Mater. 2011, 21, 1076-1081. (d) Lai, Y.-C.; Higashihara, T.; Hsu, J.-C.; Ueda, M.; Chen, W.-C. Sol. Energy Mater. Sol. Cells 2012, 97, 164-170. (e) Chen, H.-C.; Chou, S.-W.; Tseng, W.-H.; Chen, I-W. P.; Liu, C.-C.; Liu, C.; Liu, C.-L.; Chen, C.-h.; Wu, C.-I; Chou, P.-T. Adv. Funct. Mater. 2012, 22, 3975-3984.
[1] J. Peet, A. J. Heeger, G. C. Bazan, Acc. Chem. Res. 2009, 42, 1700.
[2] J. Hou, H.-Y. Chen, S. Zhang, R. I. Chen, Y. Yang, Y. Wu, G. Li,

延伸閱讀