透過您的圖書館登入
IP:13.59.9.236
  • 學位論文

高分子/奈米粒子混合型之薄膜太陽能電池之研製

Study and Fabrication of Hybrid Polymer/Nanoparticles Thin Film Solar Cell

指導教授 : 李道聖

摘要


本論文主要為研製一高分子/奈米粒子混合型之薄膜太陽能電池。由於半導體奈米結晶材料可藉於不同直徑與外型的修飾來控制其不同的物理特性,而成為重要的電子元件構成要素。特別地,半導體奈米結晶材料的能隙(Eg)是可以被調整與控制的,以此可獲得一寬能帶光波長的吸收能力。因此,以半導體無機奈米粒子混成結交之高分子成為一複合材料,將可有效地增加有機太陽能電池受光後產生的激子(excitons)之擴散長度(diffusion length)、擴散至電極的路徑(diffusion pathway to electrodes)、吸光層的結晶均勻度與光波長的吸收能帶,以增加電池的功率轉換效率(PCEs)。 本實驗主要以p-type氧化亞銅奈米粒子(Cu2O nanoparticles)和本質矽奈米粒子(Intrinsic Si nanoparticles),分別以3 wt%、5 wt%、10 wt%之重量濃度比摻混入poly(3-hehylthiophene)(P3HT)與C60之衍化物[6,6]-phenyl-C61-butyric acid methyl ester(PCBM),製備成為電池之光吸收複合層材料。接著,將其以旋轉塗佈方式塗佈於PEDOT:PSS/ITO/glass基板上,再以110oC烘烤20分鐘將大部份的溶劑驅趕出有機光吸收複合層材料。最後,再利用PVD濺鍍方式,於500 W濺鍍功率條件下沉積金屬鋁電極,並隨即以150 oC進行20分鐘的熱退火製程,以獲取有機光吸收層材料不錯的結晶特性。 結果顯示於AM 1.5G、100 mW/cm2之太陽光模擬光源照射下,未摻混任何無機奈米粒子之參考電池樣品可獲得0.67 V之開路電壓(Voc)、2.92 mA/cm2之短路電流密度(Jsc)、28 %之填充率(F.F.)及0.46 %之功率轉換效率(PCE)。摻混入3 wt% p-type氧化亞銅奈米粒子之電池可獲得Voc為0.62 V、Jsc為4.51 mA/cm2、F.F.為25 %及PCE為0.71 %;摻混入5 wt%本質矽奈米粒子之電池可獲得Voc為0.63 V、Jsc為8.89 mA/cm2、F.F.為29 %及PCE為1.55 %。其中,摻混入3 wt% p-type氧化亞銅奈米粒子與摻混入5 wt%本質矽奈米粒子之電池功率轉換效率(PCEs)皆相較參考樣品高出許多,且分別約為參考樣品的1.54倍與3.37倍。

並列摘要


This work is mainly to study and fabricate a hybrid polymer/nanoparticles thin film solar cell. Semiconductor nanocrystals are attractive as components of electronic devices due to many of their physical properties can be controlled by the modification of the diameters and shapes of the nanoparticles. Especially, the energy band gap (Eg) of semiconductor nanocrystals can be tuned and controlled to obtain a wider range of light wavelength absorption. Therefore, the composites of inorganic nanoparticles and a conjugated polymer can effectively increase the excitons diffusion length, diffusion pathway to electrodes, the nanocrystalline uniformity and a range of light wavelength absorption to improve the PCEs of organic thin film solar cell. In this study, the p-type Cu2O nanoparticles (Cu2O NPs) and intrinsic silicon nanoparticles (Si NPs) were used to doped with the different weight concentrations of 3 wt%, 5 wt% and 10 wt% in the polymer composite films of poly(3-hexylthiophene) (P3HT) and a C60 derivative of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) to improve the wider range of light wavelength absorption and the power conservation efficiency (PCEs) of organic thin film solar cells. Then, the composite material of inorganic nanoparticles/polymer was coated onto the PEDOT:PSS/ITO/glass substrate and baked at 110 oC for 20 min. Next, the aluminum layer as the conductive electrode was deposited on the inorganic nanoparticles/polymer composite film by PVD sputtering method under an applied sputtering power of 500 W. Finally, a thermal annealing process was done at 150 oC for 20 min to improve the crystalline uniformity of the composite film of organic thin film solar cell. As the result, the organic solar cell without doping inorganic nanoparticles as the reference sample can provide a Voc of 0.67 V, a Jsc of 2.92 mA/cm2, a F.F. of 28 %, and a PCE of 0.46 % under the AM 1.5G illumination with an incident light intensity of 100 mW/cm2. However, the solar cell doping with the p-type Cu2O nanoparticles of 3 wt% can obtain a Voc of 0.62 V, a Jsc of 4.51 mA/cm2, a F.F. of 25 %, and a PCE of 0.71 %. In addition, in the best result, the solar cell doping with the intrinsic silicon nanoparticles of 5 wt% can obtain a Voc of 0.63 V, a Jsc of 8.89 mA/cm2, a F.F. of 29 %, and a PCE of 1.55 %. The PCEs of the solar cell doping with the p-type Cu2O nanoparticles of 3 wt% and the intrinsic silicon nanoparticles of 5 wt% were 1.5 and 3.4 times of the reference sample, respectively.

參考文獻


1. S.E. Shaheen, D.S. Ginley, G.E. Jabbour, “Organic based photovoltaics:Toward low-cost power generation”, Mrs. Bull., 30, (2005) pp.10-18.
2. Dipl.Ing. Klaus Petritsch, “Organic Solar Cell Architectures”, Cambridge and Graz, (2000).
3. C. W. Tang, “Two-layer organic photovoltaic cell ” Appl. Phys. Lett. 48, (1986) pp.183.
4. H. Kallmans , M. Pope, “Photovoltaic effect in organic crystals” , J. Chem. Phys., 30, (1958) pp.585-586.
5. A.K. Ghosh, T.Feng, “Merocyanine organic solar cells”, J.Appl, Phys, 49, (1978) pp. 5982-5989.

被引用紀錄


林俊男(2010)。混合奈米結構之有機太陽能電池〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0028-2408201023520700
李育釗(2011)。混合奈米鑽石之高效率有機太陽能電池應用〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0028-1907201101240900

延伸閱讀