透過您的圖書館登入
IP:18.117.196.217
  • 學位論文

1.含芘和羧酸的多官能基團之聚醯胺酸共聚高分子,在微米矽複合活物材料之鋰離子電池負極作為黏著劑的應用 2.高分子側鏈含雙極性分子之合成、性質探討及其在電致發光二極體上的應用

1. Multifunctional Co-poly(amic acid) containing Pyrenyl and Carboxylic Acid as a new Binder for Si-based Micro-Composite Anode of Lithium-Ion Battery 2. Synthesis and Characterization of Polymers with Alkyl Main Chain Pendent Bipolar Unit as Host Applications in Electroluminescent Light-Emitting Diodes

指導教授 : 梁文傑

摘要


在本論文研究中,主要分為兩個主題,第一個主題為利用具有多官能基團的聚醯胺酸(poly(amic acid),PAmA)共聚高分子,其側鏈上具有功能性之官能基團芘(pyrene)和羧酸(carboxylic acid),應用在鋰離子電池負極作為黏著劑,負極活物則是從切割廢料漿液回收所得的矽基粉體,並與氧化鎳還原鍛燒後,形成的高機械強度與高導電度的矽鎳複合物微米二次粒子。另一個主題則是開發三條具有雙極性特性的高分子,其雙極性基團,懸掛在聚苯乙烯側鏈上,作為高分子電致發光元件之主體材料。在第一章節,介紹鋰離子電池的原理、發展史以及回顧負極活物材料和黏著劑的文獻。進入第二章節,將合成出具有多官能基之聚醯胺酸(poly(amic acid),PAmA)共聚體作為黏著劑使用,以Si-Ni複合材料作為活物組裝成鋰離子電池之半電池測試。300圈的重複充放電後,其電容量殘餘率維持在79%,與海草酸鈉(sodium-alginate)標準品相比有更好的表現,100圈重複充放電後的體積膨脹率只有原來的43%,表示多官能基團之聚醯胺酸(poly(amic acid),PAmA)與活物矽、助導劑和銅箔之間都有強的作用力存在,而在介面間阻抗的實驗中也可觀察到導入芘(pyrene)基團的高分子中,整體材料間的導電性的提升,表示能更有效的分散助導劑(conductive additives)而達到此效果。在第三章節,介紹有機發光二極體(OLED)的原理、發展史以及各層元件中常用材料,最後則是磷光發光元件的文獻回顧。在第四章節中,合成出三條具有雙極性基團並懸掛在聚苯乙烯側鏈的高分子作為藍光及綠光磷光元件和具有熱活化延遲螢光(thermal activated delayed fluorescence,(TADF))發光特性的主體材料。雙極性基團為導入具有電洞傳輸功能及高的三重態能量的咔唑(carbazole),以苯環鄰位個別的連接三種具有不同電子傳輸特性的材料(惡二唑(1,3,4-oxadiazole)、三氮唑(1,2,4-triazole)、苯並咪唑(benzimidazole)),使高分子具有雙極性的特性,藉由苯環鄰位連接,能有效的截斷共軛長度,使高分子具有高的三重態能量;在高分子熱性質中,由於都具有剛硬的結構,使獲得較高的玻璃轉移溫度和熱烈解溫度;電化學研究發現,高分子皆可量測到氧化和還原峰訊號,表示皆具有電子、電洞傳輸能力,也觀察到P-CBZ-OXD高分子具有與客發光體較匹配的能階,因此元件表現最好;在藍色磷光發元件架構為ITO/PEDOT: PSS/P-CBZ-OXD: 20% FIrpic/SPPO13/Mg/Ag時,最大亮度與效率分別為1763 cd/m2和11.0 cd/A;在綠色磷光元件架構為ITO/PEDOT: PSS/P-CBZ-OXD: 15% Ir(ppy)3/SPPO13/Mg/Ag時,最大亮度與效率分別為7215 cd/m2和23.7 cd/A,而以具有TADF特性的綠光材料作為客發光體時,在元件架構為ITO/PEDOT: PSS/P-CBZ-OXD: 15% 4CzIPN/SPPO13/Mg/Ag時,最大亮度與效率分別為5592 cd/m2和27.3 cd/A

並列摘要


There are two subjects in this study. One is the multifunctional co-poly(amic acid) (PAmA) containing pyrene and carboxylic acid side chains that is developed as a binder in the recycled kerf-loss Si-Ni-SiC composite for anode of lithium-ion batteries (LIB). The other is to develop the three polymeric hosts with bipolar abilities, the bipolar function are as pendant group in polystrene (PS) side chain and application in electroluminescent polymer light-emitting device (PLED). Chapter 1 was introduced principle, development, and review of active materials and binders in anode of LIB. In chapter 2, the multifunctional co-PAmA is as binder in Si-Ni Composite anode for LIB. The cycling performance of 300 cycles, electrochemical impedance spectroscopy (EIS) , change of the film morphology after cycling process of 100 cycles by SEM analysis and adhesion strength are discussed. The capacity retention performance comparsion that of sodium-alginate can be apparently enhanced. In a long-cycle test of 300 lithiation/delithiation cycles, 79% of capacity retention is achieved. Small anode thickness expansion of 43% is found in a 100 cycle test, reflecting that the use of the PAmA binder can create strong interconnection among the Si particles, conductive carbons and copper electrode. EIS experiment shows improvement to the higher electric conductivity of polymers containing pyrenyl groups, which also facilitate the dispersion of the conductive carbon additives during mixing. In chapter 3 was introduced principle, development and common materials of organic light-emitting diodes (OLEDs). Also some paper review about employed FIrpic and Ir(ppy)3 as phosphorescent dopant in PLED devices. In Chapter 4, PS-based polymers which are containing bipolar function as a pendant group on the side chain as a host for application in blue- and green-light, as well as thermal activated delayed fluorescence-based (TADF-based) PLED. The bipolar groups contain respectively ortho-substituted of CBZ/1,3,4-oxadiazole (OXD), CBZ/1,2,4-triazole (TAZ) or CBZ/benzimidazole (BZI) to afford the polymers with a bipolar function. CBZ has a high triplet energy (ET) gap and as hole-transporting moiety. On the other hand, the electron-deficient aromatic heterocycles of OXD, TAZ and BZI groups are as an electron-transporting moiety. The thermal stability, photophysical, electrochemical properties and electroluminescent performance in polymers have been discussed. All polymers show good thermal stability with high glass transition temperature (Tg) and decomposition temperature (Td) due to their rigid structure. By ortho-substituted between the bipolar groups can effectively interrupt conjugation length to obtain higher ET. In the electrochemical study, both the oxidation and reduction peak could be measured, indicating the polymers with hole- and electron-transporting abilities. In addition, we found that P-CBZ-OXD have suitable match of energy level than that of P-CBZ-TAZ and P-CBZ-BZI. Therefore, the best device performance of blue phosphorescent consisted of ITO/PEDOT: PSS/P-CBZ-OXD: 20% FIrpic/SPPO13/Mg/Ag that showed the maximum brightness of 1763 cd/m2 and the maximum current efficiency of 11.0 cd/A. For the best device performance of green phosphorescent consisted of ITO/PEDOT: PSS/P-CBZ-OXD: 15% Ir(ppy)3/SPPO13/Mg/Ag that showed the maximum brightness of 7215 cd/m2 and the maximum current efficiency of 23.7 cd/A. On the other hand, a green TADF emitter of 1,2,3,5-tetrakis (carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) was employed as guest, the devices consisted of ITO/PEDOT: PSS/P-CBZ-OXD: 15% 4CzIPN /SPPO13/Mg/Ag that showed the maximum brightness of 5592 cd/m2 and the maximum current efficiency of 27.3 cd/A.

參考文獻


1. Tarascon, J. M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.
2. Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X.; Shao, Y.; Engelhard, M. H.; Nie, Z.; Xiao, J., Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 2013, 135, 4450-4456.
3. Tarascon, J.-M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.
4. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science 2011, 4, 3243-3262.
5. Wagner, C., Equations for transport in solid oxides and sulfides of transition metals. Progress in solid state chemistry 1975, 10, 3-16.

延伸閱讀