透過您的圖書館登入
IP:3.131.13.194
  • 學位論文

導電高分子與奈米碳管結合染料和苯醌薄膜修飾電極之電化學性質研究

Preparation, Characterization and Electroanalytical Application of Conducting Polymer and Cabon Nanotube with Dye and Anthraquinone Film Modified Electrode

指導教授 : 陳生明
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究第一部份,主要利用修飾薄膜(多層奈米碳管-萘酚綠 B)以多層奈米碳管(MWCNT),固定萘酚綠 B(NGB)沉積在玻璃碳電極(GCE)上,製備快速偵測、高穩定性的過硫酸鉀生物感測器。而NGB由電沉積方法固定到MWCNT修飾膜裡,故能大幅提升電子轉移功能。NGB亦會吸附到多層奈米碳管的修飾電極表面上,藉由單層奈米碳管的多孔性來增加有效的表面積,使修飾電極性能可以達到最佳化。本研究使用掃描式電子顯微鏡和電子阻抗分析儀探測NGB - MWCNT修飾電極的特性。此外,藉由循環伏安法來測量此生物感測器,偵測其最佳化之性能。同時,實驗的結果也顯示此薄膜修飾電極,可供NGB固定在MWCNT修飾電極上,且在最適化的條件下偵測過硫酸根離子,顯示具有高穩定性、再現性及良好線性濃度範圍:1 x 10-5 到 4.74 x 10-3 M,靈敏度為73.51 μA mM-1 cm-2,偵測極限8 µM (訊雜比為3)。 第二部份是發展能夠偵測過硫酸根離子、過碘酸根離子及氧氣的生物感測器。此化學感測器的製備,是由聚(L)離胺酸(PLL)-戊二醛(GA)-蒽醌-2,6-二磺酸鹽(AQDS)所構成的。其中聚(L)離胺酸是多孔性結構,染料可以電沉積在聚(L)離胺酸薄膜上,且聚(L)離胺酸的孔洞結構更能夠填入更多蒽醌-2,6-二磺酸鹽,並以共價結合。當聚(L)離胺酸加入戊二醛能強化薄膜修飾其穩定性,並選擇蒽醌-2,6-二磺酸鹽修飾於聚(L)離胺酸-戊二醛薄膜上,可用來偵測對過硫酸根離子、過碘酸根離子及氧氣之電催化還原反應。藉由原子力顯微鏡(AFM)、掃描式電子顯微鏡(SEM)和電子阻抗分析儀(EIS)等電化學方法,檢驗此修飾電極的特性。循環伏安法(CV)的測量,可以證明苯醌和聚(L)離胺酸-戊二醛薄膜由電沉積結合在一起,且由不同掃描速率顯示其具有好的穩定性及電極可作有效率的電子轉移。利用循環伏安法對過硫酸根離子、過碘酸根離子及氧氣的電催化反應作測試發現,其中過硫酸根離子之線性濃度範圍為1 x 10-3 到 9.1 x 10-3 M,靈敏度為89.14μA mM-1 cm-2,偵測極限0.7 mM (訊雜比為3);而過碘酸根離子之線性濃度範圍為9.1 x 10-4到3.3 x 10-3 mg L-1,靈敏度為442.7 μA mM-1 cm-2,偵測極限0.6 mM (訊雜比為3);氧氣線性濃度範圍從0.7到4.4 mg/L,靈敏度為68.29 µA/mg L-1 cm2 (訊雜比為3)。本研究所發展的化學感測器,可方便製備且顯示好的穩定性。 第三部份,發展偵測氧氣的一種生物感測器。此生物感測器的製備,是由聚(L)離胺酸(PLL)-戊二醛(GA)-靛藍(ITS)所構成。其中聚(L)離胺酸是孔洞結構,染料可以電沉積在聚(L)離胺酸薄膜上,且聚(L)離胺酸的孔洞結構更能夠填入更多染料,並以共價結合。當聚(L)離胺酸加入戊二醛能強化薄膜修飾之穩定性,並選擇染料靛藍修飾於聚(L)離胺酸-戊二醛薄膜上,偵測對氧氣之電催化還原反應。藉由使用原子力顯微鏡(AFM)、掃描式電子顯微鏡(SEM)、紫外線可見光譜(UV-VIS)和電子阻抗分析儀(EIS)等電化學方法,檢驗此修飾電極的特性。由循環伏安法(CV)和石英晶體微(EQCM)天平的測量,可以證明靛藍和聚(L)離胺酸-戊二醛薄膜電沉積結合在一起,且由不同掃描速率顯示好的穩定性及電極作有效率的電子轉移。利用循環伏安法及旋轉碟電極研究,探討對氧氣的電催化反應發現,氧氣偵測可程線性濃度範圍,為從0.7到5.7 mg/L,靈敏度為406.3 µA/mg L-1 cm2 (訊雜比為3)。本研究製備的生物感測器具有再生效果,當聚(L)離胺酸-戊二醛-靛藍修飾電極置於緩衝溶液中一星期後,電流訊號逐漸減少(20%),但再次經過電沉積50圈後,聚(L)離胺酸-戊二醛-靛藍修飾電極訊號又能再回到起始狀態。本研究所發展出的生物感測器,可方便製備且顯示好的穩定性。

並列摘要


Part I:A chemical sensor for the detection of persulfate has been developed. The feature of chemical sensor is fast responding and stable. It is fabricated by using commobilizd the MWNT and Naphthol Green B (NGB) derived modified electrode; Naphthol Green B (NGB) was electrodeposited onto the MWNT modified electrode surface. The MWNT/NGB-modified electrode was characterized with scanning electron microscopy (SEM), Atomic Force microscopy (AFM). Cyclic voltammetry and amperometry measurements were used to study and optimize the performance of the resulting persulfate chemical sensor. Experimental results showed that MWCNT modified electrode provide excellent matrices for the immobilization of NGB and the optimized electrochemical sensor exhibited good linearity, low detection limit, high stability and good reproducibility for the detection of persulfate. The fabricated biosensor had a fast response of persulfate and excellent linear range of concentration from 1 x 10-5 to 4.74 x 10-3 M with the detection limit of 8 µM and a sensitivity 73.51 μA mM-1 cm-2 (S/N=3) under the optimum conditions. Part II: This study is for detection of persulfate, periodate and oxygen. Preparation of this chemical sensor was composed of poly-L-lysine - glutaraldehyde - Anthraquinone-2,6-disulfonic acid (PLL-GA-AQDS), Where PLL is a porous structure; AQDS can be electrodeposited in PLL film, and PLL pore structure is more able to fill more dyes and to combine AQDS with covalence bond. The PLL film added GA to strengthen the stability, and select the AQDS modification on PLL-GA film. For the detection of Persulfate ion , Periodate ion, and the oxygen electrocatalytic reduction reaction. Atomic force microscope (AFM), scanning electron microscopy (SEM) and electronic impedance analyzer (EIS) and other electrochemical methods, to examine the characteristics of this modified electrode. Cyclic voltammetry (CV) can prove AQDS and PLL combined with GA polymer thin film, and from the result using different scan rates, showed good stability and electrode efficiency of electron transfer, for cyclic voltammetry study on the oxygen electrocatalytic reaction. The persulfate electrochemical sensor exhibited a linear response range (from 1 x 10-3 to 9.1 x 10-3 M, R2 = 0.9954), detection limit of 7 x 10-4 M and a sensitivity 89.14 μA mM-1 cm-2 (n=3). The periodate electrochemical sensor exhibited a linear response range (from 9.1 x 10-4 to 3.3 x10-3 M, R2 = 0.9945), detection limit of 6 x 10-4 M and a sensitivity 442 μA mM-1 cm-2 (n=3). The dissolved oxygen electrochemical sensor exhibited a linear response range (from 0.7 to 4.4 mg/L, R2 = 0.9957), lowest detection limit of 0.4 mg/L and a sensitivity of 68.29 µA/mg L-1 cm2 (n=3). The study developed a chemical sensor which can be easily prepared and showed good stability. Part III: This study developed a chemical sensor for the detection of dissolve oxygen. Preparation of this biosensor is composed of poly-L-lysine - glutaraldehyde - Indigotetrasulfonate (PLL-GA-ITS), where PLL is a porous structure, dyes can be electropolymerized in PLL film, and PLL pore structure is more able to fill and combine more dyes with covalence. The PLL film added GA to strengthen the stability, and select the ITS dye modification on PLL-GA film for the detection of the oxygen electrocatalytic reduction reaction. Atomic force microscope (AFM), scanning electron microscopy (SEM), UV-visible spectrum (UV-VIS) and electronic impedance analyzer (EIS) and other electrochemical methods have been used to examine the characteristics of this modified electrode. Cyclic voltammetry (CV) and quartz crystal microbalance (EQCM) measurement scales can prove that ITS and PLL combined with GA polymer thin film, and from the result using different scan rates showed good stability and electrode efficiency of electron transfer. Cyclic voltammetry and rotating disk electrode have been used to study the oxygen electrocatalytic reaction. The dissolved oxygen electrochemical sensor exhibited a linear response range (from 0.7 to 5.7 mg/L, R2 = 0.9946), detection limit of 0.3 mg/L and a sensitivity of 406.3 µA/mg L-1 cm2 (n=3). This study has produced the regenerable biosensor. The current signals gradually decreased (20%) when the PLL-GA-ITS modified electrodes placed in buffer solution in a week, but after the electropolymerization, PLL-GA-ITS modified electrode signal has again returned to the initial state. The study developed a chemical sensor can be easily prepared and showed good stability.

參考文獻


[3] J. Clark, C. Lyons, Annals of the New York Academy of Sciences, 102 (1962) 29.
[5] A. Sternesjo, Anal. Chem., 226 (1995) 175.
[6] P. Saber, W. Lund, Talanta, 29 (1982) 457.
[13] P.N. Bartlett, J. M. Cooper, J. Electroanal. Chem., 362 (1988) 1.
[15] J. P. Lowry, R. D. O’Neill, Electroanal., 6 (1994) 369.

被引用紀錄


銀解語(2011)。聚亞甲基藍/FAD與聚發光胺/MWCNT修飾電極應用於測定H2O2和NADH生物感測器的電化學研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2011.00180
黃家彥(2013)。使用吩嗪類有機染料結合FAD輔因子與金屬複合薄膜搭配多層奈米碳管對於NADH、H2O2、S2O82-與甲醇電催化反應研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-0907201317384100

延伸閱讀