透過您的圖書館登入
IP:18.221.187.207
  • 學位論文

近場外差干涉儀的設計與研製

Design and Construction of Scanning Near-Field Optical Heterodyne Interferometer

指導教授 : 李世光

摘要


奈米光學、光子晶體與表面電漿為近年蓬勃發展的光學研究,次波長結構與近場下的光學現象在奈米科技熱潮引領的研究上也發現越來越多的應用。在如此微小尺度下的光學現象,傳統光學遠場成像已面臨瓶頸,近場光學顯微鏡為具有突破繞射極限限制的光學儀器,以近場的方式擷取高解析度的影像,由於相關技術的突破與相關光學現象的深入了解,使得近場光學顯微鏡成為探索奈米光子學的必要工具。 一般光電偵測都是量測光強訊號,無法完整分析光場的特性,而相位偵測有較光強更好的敏感性,本論文以干涉方式取相完成近場光學顯微鏡量測相位的能力,將原本近場光學系統結合外差光纖干涉儀之實驗架構,具有高精度與高感度的優點,對於高頻近場光學訊號的指數衰減特性以及光纖探針位提升解析度縮小孔徑造成導光能力大幅下降,在外差干涉偵測下提高訊號的對比,降低放大弱光訊號所造成的雜訊,提升了近場光學顯微鏡的性能。除訊號提昇之外,亦可分析近場下的相位資訊,從相位資訊中可以了解電磁波的傳遞以及光場的特性。 本系統涵蓋近場光學顯微鏡系統、光纖干涉感測、外差移頻技術、光電偵測信號處理與抗雜訊與環境干擾方法,完成建構近場外差干涉儀,並以聚焦光點、繞射光柵與次波長表面結構驗證整體系統在量測訊號上提升的能力,證實相位資訊更能敏感反應電磁場傳遞變化。

並列摘要


Nanophotonics, photonic crystal and surface plasmons are hot topics in optics research in recently years. Optical phenomena in subwavelength structure and near- field region had been applied to many applications in this nano-technology trend. Conventional optical microscopy had encountered bottleneck in such small scale because of the far-field image resolution. Near-field scanning optical microscopy (NSOM) is the instrument which can overcome the diffraction limit by getting high resolution image in near-field region. By the development of related techniques and the knowledge of near-field optics, NSOM becomes the essential measurement tool for nanophotonics. Photodetection generally transfer light intensity to electric signal, so it cannot analyze the complete characteristics of light field. Phase detection is more sensitive than intensity detection. In this thesis, interferometry is added into NSOM to measure the optical phase. The combination of NSOM system and heterodyne fiber interferometer has shown high precision and high sensitivity ability. Because of the exponential decay of high spatial frequency near-field optics and much smaller aperture of high resolution fiber tip, the optical signal is very weak. Heterodyne interferometer can enhance the contrast of signal and decrease the noise of amplifying low level signal. Besides improving the NSOM signal, heterodyne interferometer can help to get phase information which leads to better understanding of the electromagnetic wave propagation characteristics of light field. This system contain near-field scanning optical microscopy, fiber interferometer, heterodyne technique, photodetecion, signal processing, noise reduction and environment control method. Experiments of focus spot, diffraction grating and subwavelength surface structure confirm the low-level signal measurement ability of the near-field heterodyne interferometer and further verify the higher sensitivity achieved by using the phase detection to examine the electromagnetic wave propagation behaviors.

參考文獻


2. E. H. Synge, "Suggested method for extending microscopic resolution into the ultramicroscopic region," Philosophical Magazine 6, 356 (1928).
3. E. H. Synge, "An application of piezoelectricity to microscopy," Philosophical Magazine 13, 297 (1932).
4. J. A. O'Keefe, "Resolving power of visible light," Journal of the Optical Society of America 46, 359 (1956).
5. E. A. Ash, and G. Nicholls, "Super-resolution aperture scanning microscope," Nature 237, 510 (1972).
6. G. Binning, H. Rohrer, C. Gerber, and E. Weibel, "Surface studies by scanning tunneling microscopy," Phys. Rev. Lett. 49, 57 (1982).

被引用紀錄


宋奕輝(2013)。設計與研製雷射加工用光纖次波長圓環結構〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2013.00127
李侑勳(2011)。以中空微管製作次波長圓環孔徑結構於曝光微影系統之模擬與研究驗證〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2011.00246
陳德薰(2010)。近場光纖微影及延伸石英管奈米直寫儀之前導性研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2010.01300

延伸閱讀