透過您的圖書館登入
IP:18.222.184.126
  • 學位論文

氣候變遷下未來建築節能與外殼設計策略之研究

A study of building energy conservation and evelope design adaptation in response to future climate change

指導教授 : 黃國倉
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


全球暖化會對建築物增加外界環境熱負荷,因此這些額外增加的熱勢必對人居空間造成相當大的影響,假若不採取策略因應,未來人類將無法滿足食、衣、住、行四大需求之一的居住基本需求。故本研究將藉著美國國家再生能源實驗室建立之典型氣象年方法,與Belcher, Hacker et al. (2005)建立的型態轉變法,利用中央氣象局台北高雄兩地歷史實測氣象資料,對政府間氣候變遷專門委員會氣候變遷第五次評估報告(Intergovernmental Panel on Climate Change Fifth Assessment Report,IPCC AR5)使用之第五階段偶合模式比較計畫(Coupled Model Intercomparison Project Phase 5,CMIP5)之全球尺度最新未來氣候變遷模擬資料,製作當代(2000至2014年)、近未來(2011至2040年)、世紀中(2041至2070年)與世紀末(2071年至2100年)共4個時間區段之典型氣象年與未來典型年,再藉由美國能源部官方建築性能模擬軟體EnergyPlus進行性能模擬,確認未來氣候變遷對建築耗能的影響量,與尋找出適當的建築物外殼改善策略,以因應必然到來的全球暖化現象。 本研究發現窗牆比30%辦公建物空調耗能密度在未來將增加1.86至9.53 kWh/m2,而窗牆比60%的辦公建物將增加1.81至9.06 kWh/m2,窗牆比90%的辦公建物則增加1.81至8.83 kWh/m2。另外,藉由調控建築物外牆參數並分析其在未來的耗能改變,本研究求得了對應不同窗牆比建物在各個氣候情境假設下未來的耗能增加量與建築物外殼參數間的關係式。並藉此關係室分析出使未來耗能量能回歸當代水平的各種外殼改造策略組合,並以圖表的方式進行呈現,希望能提供決策者進行簡單方便的使用。

並列摘要


Global warming rises the environment heat gain to a building, and makes the building cooling energy demand become greater. In order to face this upcoming risk, finding a way to evaluate the change of cooling demand is important. Therefore, this study establish a set of future weather years for building performance simulation tools based on the methods of constructing Typical Meteorological Year (TMY) and the morphing process which introduced by Belcher, Hacker et al. (2005). Using from historical observed data which is recorded by Taiwan Central Weather Bureau and the newest General circulation model (GCM) outputs which is provided from Coupled Model Intercomparison Project Phase 5 (CMIP5), contemporary weather years (2000~2014) and three timesclice of future weather years (2011~2040, 2041~2070 and 2071~2100) is well developed. By inputting these weather years into EnergyPlus building performance simulation tool, the future change of cooling energy demand is confirmed. Office buildings with 30% of Window-to-Wall Ratio (WWR) will rise 1.86 to 9.53 kWh/m2 of cooling energy intensity, office buildings with 60% of WWR will rise 1.81 to 9.06 kWh/m2, and office buildings with 90% of WWR will rise 1.8 to 8.83 kWh/m2 . Depends on these results, the strategies of conserving energy can be formulated. This study formulates the strategies by adapting the building evelope design, and presents these as figures in order to help decision-makers easier to make decisions.

參考文獻


Argiriou, A., S. Lykoudis, S. Kontoyiannidis, C. A. Balaras, D. Asimakopoulos, M. Petrakis and P. Kassomenos (1999). "Comparison of methodologies for tmy generation using 20 years data for Athens, Greece." Solar Energy 66(1): 33-45.
Belcher, S. E., J. N. Hacker and D. S. Powell (2005). "Constructing design weather data for future climates." Building Services Engineering Research and Technology 26(1): 49-61.
Berger, T., C. Amann, H. Formayer, A. Korjenic, B. Pospischal, C. Neururer and R. Smutny (2014). "Impacts of climate change upon cooling and heating energy demand of office buildings in Vienna, Austria." Energy and Buildings 80(0): 517-530.
Chan, A. L. S. (2011). "Developing future hourly weather files for studying the impact of climate change on building energy performance in Hong Kong." Energy and Buildings 43(10): 2860-2868.
de Miguel, A., J. Bilbao, R. Aguiar, H. Kambezidis and E. Negro (2001). "Diffuse solar irradiation model evaluation in the North Mediterranean Belt area." Solar Energy 70(2): 143-153.

延伸閱讀