透過您的圖書館登入
IP:3.149.229.253
  • 學位論文

燃煤火力發電廠燃燒後薄膜分離碳捕捉程序

Membrane Separation Process for Post-combustion CO2 Capture from Coal-fired Power Plant

指導教授 : 陳誠亮

摘要


針對火力發電廠進行燃燒後碳捕捉是目前減少二氧化碳排放的一個可行方式。目前發展最久的碳捕捉方式為胺吸收法碳捕捉,然而此程序極為耗能因此所需操作成本昂貴。薄膜分離碳捕捉程序提供了低能耗與低捕捉價格的替代選擇。 本研究利用模擬軟體Aspen Plus®進行程序設計、模擬與分析,同時使用Aspen Custom Modeler®來建構薄膜單元模型並整合至Aspen Plus®。進行碳捕捉的電廠煙道氣資料參考自DOE/NETL的報告。薄膜性質參數則參考自Polaris® 薄膜性質數據,薄膜的CO2滲透率為1000 GPU,而CO2/N2 選擇性則為50。 在設計出完整的薄膜分離程序之前,我們必須先探討幾個在程序上主要影響薄膜程序表現的設計參數:壓力比、膜級切(stage-cut)、流動型態、多級薄膜與回流設計。兩種特殊的燃燒後薄膜碳捕捉設計:預先除水 (water pre-removal) 與空氣掃流 (air sweep) 也會一併探討。 我們目標是設計出能夠從550 MW火力發電廠中捕捉90%二氧化碳的多級薄膜分離程序,而程序薄膜面積與能耗是決定最適化設計的關鍵。目前最佳的程序結果所需薄膜面積為1.23 million m2 且能耗為98 MW,碳捕捉率可以達到90% 且最終分離的液態CO2產物純度可以達到97.7 mol%。模擬結果顯示針對550 MW的火力發電廠,薄膜碳捕捉價格約為 $22/ton CO2,而能耗約莫佔了電力輸出的18%。

並列摘要


One promising way to reduce CO2 emissions is post-combustion CO2 capture from flue gas at coal-fired power plant. A wide variety of capture techniques has been proposed and studied. Conventional Amine-based process is the dominate method used for CO2 separation. However, the process is energy-intensive and therefore it becomes very costly. Gas separation membrane process gives an opportunity to be a low cost and low energy consumption option for capturing CO2 from power plant flue gas. In this study, membrane process for post-combustion CO2 capture has been designed, simulated and analyzed by using Aspen Plus® simulation software. A membrane model can be built by Aspen Custom Modeler® (ACM) and then implemented into Aspen Plus®. The reference power plant flue gas data is based on the DOE/NETL report. The membrane parameters (permeance and selectivity) are referred to Polaris® membrane data. The CO2 permeance is 1000 GPU and CO2/N2 selectivity is 50. Membrane design considerations such as pressure ratio, stage cut, flow module, multi-stage configuration and recirculation have been studied to know how they effect on membrane process and help to determine the optimal design. Also, two particular design for post-combustion CO2 capture, water pre-removal and air sweep, will also be discussed. Multi-stage membrane separation process has been designed for capturing 90% CO2 from 550 MW power plant flue gas. The membrane area and power consumption are the key point to determine the cost of the process. They are taken into consideration to decide the optimal design of the process. The optimized case has demonstrated that the required power consumption is 98 MW and the membrane area needed is 1.23 million m2. The 90% CO2 capture is achieved and the final liquefied CO2 product purity can be reached to 97.7%. The CO2 capture cost is about $22/ton and the power consumption of the process (98 MW) only occupy 18% of power plant output。

參考文獻


[2] F. Birol, CO2 Emissions from Fuel Combustion Helights, in, OECD/IEA, 2015.
[3] J.D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, R.D. Srivastava, Advances in CO2 capture technology—The U.S. Department of Energy's Carbon Sequestration Program, International Journal of Greenhouse Gas Control, 2 (2008) 9-20.
[5] T.C. Merkel, H.Q. Lin, X.T. Wei, R. Baker, Power plant post-combustion carbon dioxide capture: An opportunity for membranes, J. Membr. Sci., 359 (2010) 126-139.
[6] D.Y.C. Leung, G. Caramanna, M.M. Maroto-Valer, An overview of current status of carbon dioxide capture and storage technologies, Renew. Sust. Energ. Rev., 39 (2014) 426-443.
[7] B.Y. Li, Y.H. Duan, D. Luebke, B. Morreale, Advances in CO2 capture technology: A patent review, Appl. Energy, 102 (2013) 1439-1447.

延伸閱讀