透過您的圖書館登入
IP:18.119.132.223
  • 學位論文

三苯胺共軛高分子於光感式有機場效應電晶體式記憶體之設計與光誘發行為探討

Design and Exploration of Photo-Induced Programming and Erasing Behaviors of Photo-Responsive Organic Field-Effect Transistor Memories with Triphenylamine-Based Conjugated Polymer Electrets

指導教授 : 劉貴生

摘要


隨著資訊量爆炸性地增長和計算機速度革命性地發展,非易失性閃存記憶體迫切地需要具有高安全性,高傳輸速度,低干擾以及低延遲的光通信系統。與傳統的電驅動的記憶體相比,新穎的光調製記憶體由於其節能,極速傳輸,以及獨特的電應力與光脈衝的正交可操作性,引起了研究人員想深入探討的熱情。本研究分為四章。第一章是概述,包括對共軛聚三苯胺高分子的評論,有機場效應晶體管記憶體類別的介紹,聚集誘導的行為以及當前的光集成存儲系統。在本文中,將使用基於三苯胺(TPA)的供體-受體共軛聚合物,並於側鏈中設計具有不同拉電子基團的駐極體(氰基,α-氰基苯乙烯,三氰基乙烯基)。所得到的PTPAs可以在聚集狀態下誘導出完全不同的發光行為。其中,PTPA-CN和PTPA-CNBr表現出聚集誘導發光的性質,而PTPA-3CN則轉變成聚集引起的猝滅行為。第二章首先演示了PTPA-3CN是一隻極具潛力的光可恢復的駐極體候選人,因為具有強大的分子內偶極矩和ACQ特性,可以顯著地縮短光恢復時間。另外,還能通過分子設計來詳盡性地闡述光誘導恢復的機制。此外,具有發光特性的AIE聚合物(PTPA-CN和PTPA-CNBr)可以憑藉發光來提高半導體層中的電荷濃度,並通過適當的能階在兩層界面中順利地產生層間激子,為聚合物駐極體的光子晶體管存儲器實現了前所未有的光編程行為。藉由光學實驗(穩態PL與脈衝PL)都可以直接觀察到層間激子的形成,並清楚地證實光誘導寫入之機制。最後,第三章為本研究之總結論。

並列摘要


Following the explosive growth of information and the revolutionary development of computing speed, optical communication systems featuring high security, high speed, low interference, and low latency have been urgently desired by non-volatile flash memory. Compared with conventional electric-driven memory, the novel photo-modulated memory has arisen enthusiasm of researchers because of their energy-saving, ultrafast transmission, and orthogonal operability in voltage stress as well as optical pulses. This study has been separated into four chapters. Chapter 1 is a general introduction that includes commentary on conjugated poly(triphenylamine)s, categories of organic field-effect transistor memory, aggregation-induced behavior, and current photo-integrated storage systems. Herein, triphenylamine (TPA)-based donor-acceptor conjugated polymers were designed as electrets with different electron-withdrawing groups in the side chain (cyano, α-cyanostilbene, tricyano-vinyl). The available PTPAs would induce disparate luminescent behaviors in aggregated states. PTPA-CN and PTPA-CNBr exhibit aggregation-induced emission (AIE), while PTPA-3CN turns to aggregation-caused quenching (ACQ) behavior. Chapter 2 demonstrates PTPA-3CN, a promising photo-recoverable electret candidate, featuring strong intramolecular dipole-moment and ACQ characteristics that could significantly shorten photo-induced recovery time. In addition, the comprehensive mechanism of photo-induced recovery has been elucidated through molecular design. Furthermore, AIE-polymers (PTPA-CN and PTPA-CNBr) inhering luminescence identity could promote charge concentration in the semiconductor layer, accomplishing unprecedented photo-programming behavior for the polymer-electret-based photonic transistor memory through proper energy-level producing interlayer excitons in the interface. The mechanism of photo-induced memory is soundly corroborated by directly observable optical results regarding interlayer excitons formed in steady-state PL and pulse-PL experiments. Finally, Chapter 3 provides the complete conclusions of the study

參考文獻


Chapter 1
[1] a) M. S. Jung, T. W. Lee, J. H. Lee, B. H. Sohn, I. S. Jung, Polymer 2006, 47, 2670; b) J. Li, T. Sano, Y. Hirayama, K. Shibata, Synth. Met. 2009, 159, 36; c) S. C. Lo, P. L. Burn, Chem. Rev. 2007, 107, 1097; d) J. Lu, Y. Jin, J. Ding, Y. Tao, M. Day, J. Mater. Chem. 2006, 16, 593; e) H. Namai, H. Ikeda, Y. Hoshi, N. Kato, Y. Morishita, K. Mizuno, J. Am. Chem. Soc. 2007, 129, 9032; f) W. Shi, S. Fan, F. Huang, W. Yang, R. Liu, Y. Cao, J. Mater. Chem. 2006, 16, 2387; g) G. Tu, C. Mei, Q. Zhou, Y. Cheng, Y. Geng, L. Wang, D. Ma, X. Jing, F. Wang, Adv. Funct. Mater. 2006, 16, 101.
[2] a) J. Lee, S. Cho, C. Yang, J. Mater. Chem. 2011, 21, 8528; b) Y. Song, C. Di, W. Xu, Y. Liu, D. Zhang, D. Zhu, J. Mater. Chem. 2007, 17, 4483; c) Y. Song, C. Di, X. Yang, S. Li, W. Xu, Y. Liu, L. Yang, Z. Shuai, D. Zhang, D. Zhu, J. Am. Chem. Soc. 2006, 128, 15940; d) M. Sonntag, K. Kreger, D. Hanft, P. Strohriegl, S. Setayesh, D. de Leeuw, Chem. Mater. 2005, 17, 3031; e) X. Yu, J. Yu, J. Zhou, J. Huang, Y. Jiang, Appl. Phys. Lett. 2011, 99, 164.
[3] a) C. Y. Chi, M. C. Chen, D. J. Liaw, H. Y. Wu, Y. C. Huang, Y. Tai, ACS Appl. Mater. Interfaces 2014, 6, 12119; b) S. Günes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007, 107, 1324; c) L. M. Huang, C. W. Hu, H. C. Liu, C. Y. Hsu, C. H. Chen, K. C. Ho, Sol. Energy Mater. Sol. Cells 2012, 99, 154; d) J. K. Koh, J. Kim, B. Kim, J. H. Kim, E. Kim, Adv. Mater. 2011, 23, 1641; e) G. Puckyte, B. Schmaltz, A. Tomkeviciene, M. Degbia, J. Grazulevicius, H. Melhem, J. Bouclé, F. Tran-Van, J. Power Sources 2013, 233, 86; f) C. Y. Tseng, F. Taufany, S. Nachimuthu, J. C. Jiang, D. J. Liaw, Org. Electron. 2014, 15, 1205.
[4] a) S. W. Cheng, Y. H. Chang Chien, T. Y. Huang, C. L. Liu, G. S. Liou, Polymer 2018, 148, 382; b) Y. H. Chou, C. L. Tsai, W. C. Chen, G. S. Liou, Polym. Chem. 2014, 5, 6718; c) Y. H. Chou, H. J. Yen, C. L. Tsai, W. Y. Lee, G. S. Liou, W. C. Chen, J. Mater. Chem. C 2013, 1, 3235; d) T. Y. Huang, C. H. Chen, C. C. Lin, Y. J. Lee, C. L. Liu, G. S. Liou, J. Mater. Chem. C 2019, 7, 11014; e) A. D. Yu, T. Kurosawa, M. Ueda, W. C. Chen, J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 139; f) Y. Yu, L. Y. Bian, J. G. Chen, Q. H. Ma, Y. X. Li, H. F. Ling, Q. Y. Feng, L. H. Xie, M. D. Yi, W. Huang, Adv. Sci. 2018, 5, 1800747.

延伸閱讀