透過您的圖書館登入
IP:3.144.161.116
  • 學位論文

以原子層沈積技術成長參雜鉿的氧化鋅薄膜應用於奈米銀線複合電極之研究

Applying Hafnium-doped zinc oxide film by atomic layer deposition to silver nanowires composite electrode

指導教授 : 蔡豐羽

摘要


奈米銀線是最有潛力替代氧化銦錫的材料之一,但由銀線製成的電極有兩項重大缺點,第一為長時間環境穩定性問題,第二為長時間電流操作穩定性問題,這兩項缺點是銀線電極要作為實際應用上必須解決的問題,因此本論文主要是想利用原子層沉積技術沉積參雜鉿的氧化鋅薄膜覆蓋在奈米銀線網路上來企圖解決上述兩個缺點,這樣所製成的複合電極在光學和電性上皆有優異的表現,其中在可見光光波段550奈米處的穿透度有87.2%,電極的片電阻為26.3歐姆每單位平方,這樣的光電特性都和商用氧化銦錫特性相當。在環境穩定性上,複合電極在攝氏85度和相對溼度85%的九天加速劣化測試後,對比於原電阻,複合電極電阻僅先上升為約1.2倍;在電流操作穩定性上,複合電極在每平方公分88豪安培的電流連續操作120小時過後,輸出電壓相較原先也僅上升至1.13倍;而複合電極在作為鈣鈦礦太陽能電池元件電極表現上,電池元件效率和以氧化銦錫作為電極的元件相當。從以上結果說明了我們的方法不僅能改善奈米銀線環境穩定性和電流操作穩定性的問題,如此製成的複合電極也有其潛力能實際應用在光電產業。

並列摘要


Silver nanowire is one of the most promising substitute material for indium tin oxide. However, electrode made of silver nanowires network has poor long term air stability and current operation stability, which hinder its practical application. In this thesis, to solve these problems a AgNWs-HZO composite electrode was developed by depositing ALD Hafnium-doped zinc oxide on silver nanowires film. The composite electrode showed 87.2% total transmittance at 550 nm and 26.3 Ω/□ in sheet resistance, which are comparable to commercial ITO. In addition, after 9-days storage in 85°C/85% relative humidity environment, the resistance of composite electrode was raised less than 1.2 times and after 120-hrs current operation test at 88 mA/cm2, the output voltage of composite electrode was raised only 1.13 times. Moreover, the perovskite solar cells on AgNW-HZO composite electrode showed good photovoltaic performance as much as solar cells on commercial ITO. Hence our composite electrode not only improves air stability and current operation stability of silver nanowires but also has potential to serve as transparent electrode in optoelectronic application.

參考文獻


[1] D. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet, and J.-P. Simonato, “Flexible transparent conductive materials based on silver nanowire networks: a review,” Nanotechnology, vol. 24, no. 45, p. 452001, Nov. 2013.
[2] C. J. Emmott, A. Urbina, and J. Nelson, “Environmental and economic assessment of ITO-free electrodes for organic solar cells,” Sol. Energy Mater. Sol. Cells, vol. 97, pp. 14–21, 2012.
[3] J. L. Elechiguerra, L. Larios-Lopez, C. Liu, D. Garcia-Gutierrez, A. Camacho-Bragado, and M. J. Yacaman, “Corrosion at the Nanoscale:  The Case of Silver Nanowires and Nanoparticles,” Chem. Mater., vol. 17, no. 24, pp. 6042–6052, Nov. 2005.
[4] C. Mayousse, C. Celle, A. Fraczkiewicz, and J.-P. Simonato, “Stability of silver nanowire based electrodes under environmental and electrical stresses,” Nanoscale, vol. 7, no. 5, pp. 2107–2115, Jan. 2015.
[5] R. D. Glover, J. M. Miller, and J. E. Hutchison, “Generation of Metal Nanoparticles from Silver and Copper Objects: Nanoparticle Dynamics on Surfaces and Potential Sources of Nanoparticles in the Environment,” ACS Nano, vol. 5, no. 11, pp. 8950–8957, Nov. 2011.

延伸閱讀