透過您的圖書館登入
IP:3.140.185.123
  • 學位論文

抗震點火晶片研製

Investigation of Shock-Resistant Ignition Chips

指導教授 : 翁宗賢

摘要


電火工品(Electro-Explosive Device, EED)是觸發含能材料反應的起始能量,因其反應速率快,工作功率高,故常應用在火箭脫節、點燃推進燃料、觸動車輛安全氣囊的氣體產生器等產品上。 本文針對電火工品的電橋結構進行研究,以改進傳統電橋絲結構的諸多缺失。本文運用微機電製作技術,首先在矽晶片上成長二氧化矽厚膜層,接著在氧化層上製作金(Au)薄膜電橋,然後切割成平整的電橋晶片,使點火晶片相較於傳統外部焊接的電橋絲,具有反應速度快、起始能量低、抗衝擊佳的特性。為了瞭解此種薄膜晶片的點火特性與反應金屬的作用機制,本文首先利用數值摹擬的方法來分析Au鈍感薄膜電橋的電-熱升溫歷程,設計並製作出金鈍感點火晶片;然後在Au電橋表面鍍上鋯(Zr)層,製作出反應式覆層金屬薄膜點火晶片。 為測試Au鈍感與Au/Zr反應式點火晶片的性能,本文利用33μF的電容器充電至33.5 V,然後放電觸發電橋,所有電橋皆能成功地擊發。在點觸電路的同時,除了量測電橋上的電壓變化外,也在晶片外部以光二極體量測電橋發出熱輻射的歷程,比較兩者的訊號,以確認電橋溫度升溫至相變化或放熱反應的時間。接下來以這兩種電橋觸發滿足MIL-STD-1512規範的鋯粉/過氯酸鉀(Zr/KClO4)反應式物質,驗證電橋晶片的能量足以激發Zr/KClO4作用;並以2000畫面/秒的高速攝影裝備觀察反應過程,觀測Zr/KClO4燃燒完畢的時間。試驗結果顯示,含有反應式材料的Au/Zr點火晶片反應速度為1.7 μsec,快於鈍感Au點火晶片的2.6 μsec,這是含能材料的自導傳高溫合成反應的結果。本文的數值分析模型估算鈍感Au點火晶片的反應時間為2.8 μsec,與實驗量測誤差僅0.2 μsec。由高速攝影的過度曝光畫面來觀測,Au/Zr點火晶片觸發之Zr/KClO4燃畢時間為6片畫面時間(3 ms),Au點火晶片為9片畫面(4.5 ms),試驗結果顯示含有Zr確實可使點火反應加快。 針對衝擊響應特性,本文以點火晶片與傳統鉑銥合金絲式電橋做衝擊數值摹擬,檢視電橋結構所受之最大應力與最大位移量。分析結果顯示Au點火晶片在半導體微電路元件測試標準—MIL-STD-883D Method 2002.3機械衝擊允收規範下,足以抵抗衝擊值1500 G、歷時0.5 msec之Condition B與衝擊值10000 G、歷時0.2 mesc之Condition E的半正弦波加速度衝擊,故可供耐環境衝擊產品使用。利用本研究所製作之晶片,經陶瓷底座與金屬外殼封裝後形成電火工品,並整合點火電路形成一種可於衝擊環境中使用的點火系統,以供火箭推進點火、脫節點火或車輛撞擊安全氣囊點火使用。 因為高G值衝擊實驗多為破壞性實驗,使用全系統模組來進行試驗代價太過高昂,本文針對需抗高加速度衝擊存活的點火電路系統,以數值分析的方式設計了一種利用含能材料釋放能量的推送質量系統,構成衝擊產生器,量測數據顯示本文所研製之衝擊產生器可產生均方根加速度值5,152 G,平均有效衝擊作用歷程2.11 msec之重力加速度環境,此加速度-時間歷程經過衝擊響應頻譜(Shock Response Spectrum, SRS)分析後,獲得自然頻率區域的響應值,其包絡線滿足MIL- STD-810F衝擊環境規範所律訂之曲線條件。此種高G值衝擊產生裝置除了可以供點火系統測試使用外,亦可作為重量為1公斤等級之機械、電子等次組件執行高加速度衝擊測試之裝置。

並列摘要


An electro-explosive device can provide high initiating power to trigger energetic materials in a fast rate. They are widely utilized in automobile, aeronautics, space, and defense industries. In this thesis, planar bridge structures of novel electric-explosive devices were investigated to improve over conventional metal bridge wires. The solid ignition chips were fabricated via micro-electro-mechanical system (MEMS) technologies. Gold (Au) bridges were deposited and patterned on the oxide layer of a silicon wafer. These thin- film ignition chips can be integrated as excellent electro-actuating devices capable of initiating energetic materials with exceptional features of fast response, low initiating energy, high stability, and high shock resistance. The design and manufacture of the Au ignition chips were based on numerical simulations of the metal bridges undergoing electric-thermal heating processes. Afterward, a shaped layer of Zirconium (Zr) was overlaid on the Au bridge to form a reactive ignition chip. In order to elucidate the igniting performances of the inert Au and reactive Au/Zr metal bridges, both thin-film chips were successively activated by an electric igniting circuit with a 33μF capacitor charged to 33.5 V. In addition to monitoring the voltage across the bridge during actuating, a photodiode was simultaneously used to detect the radiative intensity of the bridge under activation. Both signals evidence scenarios of temperature rising, phase changes, and percussion of the bridge reactions. The two types of the solid igniters were then employed to trigger a small amount of reactant powder Zr/KClO4 according to MIL-STD-1512 regulation overlaid on each of the bridges with satisfactory success. The exothermic reaction of Zr/KClO4 powder was confirmed by a high-speed CCD camera imaged at 2000 frames/sec. The experimental results reveal that the reacting time for the Au/Zr bridge is 1.7

參考文獻


[1] E. F. Cooper, “Electro-explosive devices,” IEEE Potentials, Vol. 19, pp. 19-22, 2000.
[2] X. Zhang, A. Mehra, A. A. Ayon, and I. A. Waitz, “Igniters and temperature sensors for a micro-scale combustion system,” Sens. Actuators A: Phys. Vol. 103, pp. 253-262, 2003.
[3] D. A. Benson, M. E. Larsen, A. M. Renlund, W. M. Trott, and R. W. Bickes Jr., “Semiconductor bridge: a plasma generator for the ignition of explosives,” J. Appl. Phys., Vol. 62, pp. 1622-1632. 1987.
[6] K. N. Lee, M. I. Park, S. H. Choi, C. O. Park, and H. S. Uhm, “Characteristics of plasma generated by poly-silicon semiconductor bridge (SCB),” Sens. Actuators A: Phys., Vol. 96, pp. 252-257, 2002.
[7] W. Smetana, R. Reicher, M. Mundlein, J. Nicolics, and H. Homolka, “Thick film initiator elements- an alternative to resistive initiators for automotive safety units,” 26th International Spring Seminar on Electronics Technology, Slovak Republic, May 8-11, 2003.

被引用紀錄


陳宜謙(2011)。金薄膜點火頭之起爆能量與升溫狀態模擬〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2011.00938
林振昇(2010)。抗靜電點火晶片之設計與研製〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2010.02748
鄭翔聯(2010)。金薄膜點火器之設計與高G值衝擊測試模擬〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2010.01835
陳煥章(2009)。衝擊產生器的設計參數與其響應頻譜探討〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2009.00428
劉奕良(2005)。輻射熱追蹤法應用於快速熱處理爐之研究與探討〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2005.02777

延伸閱讀


國際替代計量