透過您的圖書館登入
IP:3.148.243.252
  • 學位論文

結構最佳化之新式混合兩點近似法

A New Mixed Two-Point Approximation Method for Structural Optimization

指導教授 : 鍾添東
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本文根據兩點指數近似法及基於梯度的移動漸進線近似法,提出一個新的結構最佳化近似方法,稱為兩點指數近似法及基於梯度的移動漸進線近似法之混合近似方法。在此方法中,近似函數是藉由兩個連續設計點的函數值以及靈敏度值所建立。除此之外,當兩個連續設計點之靈敏度值有正且有負,函數的精確度將會藉由基於梯度的移動漸進線近似法而改善。並且,在兩點指數近似法及基於梯度的移動漸進線近似法之混合近似方法中,指數的限制將會根據前一個設計點的函數值自動調整。經由此近似法,可將結構之行為函數,諸如應力、位移等,轉換成設計變數的顯函數。如此一來,運用傳統數值最佳化方法即能有效求解近似問題。此外,本文也整合最佳化理論與有限元素分析軟體以及程式設計程式,發展一套整合程式以求解結構最佳設計問題。結果指出在一般結構最佳設計問題之中,利用此法能快速找到收斂並且正確的解;同時也顯示出本法在結構最佳化中之效率及實用性。

並列摘要


This thesis presents a new approximation method for structural optimization, which is based on the TPEA and the GBMMA approximations, named TPEA-GBMMA. In this method, approximate functions are constructed by the function values and sensitivities of two successive design points. In addition, the functional precision is improved by using GBMMA when the sensitivities of two successive design points have different signs. Moreover, the exponential limitation in TPEA-GBMMA is adjusted automatically according to the function value of previous design point. The structural behavior functions, such as stress and displacement, can be converted to the explicit form of design variables with the use of the proposed method. Hence, the conventional optimization techniques can work efficiently to solve the approximate problems. A computer program is developed by integrating the finite element software ANSYS, Microsoft Visual Studio 2008, and numerical search methods to solve structural optimum design problems. The results indicate that the new approximation can quickly find the convergent and accurate solutions for general optimization problems. Also, the practicability and efficiency of the new approximation in structural optimization is proved.

參考文獻


[22] 黃侯瑋, 結構最佳化設計之準二次兩點指數近似法, 台大機械工程學研究所碩士論文, 2005.
[23] 張耀仁, 結構最佳化設計之準二次兩點保守近似法, 台大機械工程學研究所碩士論文, 2007.
[24] 陳奕彰, 結構最佳化之指數移動漸進線近似法, 台大機械工程學研究所碩士論文, 2010.
[33] 朱志祥, 精密定位平面運動平台之結構設計與分析, 台大機械工程學研究所碩士論文, 2010.
[34] 李哲維, 低地板電動大客車底盤之結構分析與最佳化設計, 台大機械工程學研究所碩士論文, 2010

被引用紀錄


林俊毅(2013)。TANA-TDQA的兩點混合近似法最佳化 探討及應用〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2013.01201
Chen, F. Y. (2017). 結構最佳化之兩點適應移動漸近線近似法 [master's thesis, National Taiwan University]. Airiti Library. https://doi.org/10.6342/NTU201702677
Wang, W. D. (2016). 結構最佳化之準二次移動漸近線近似法 [master's thesis, National Taiwan University]. Airiti Library. https://doi.org/10.6342/NTU201603322
Ke, H. Y. (2016). 結構最佳化之兩點分段適應近似法 [master's thesis, National Taiwan University]. Airiti Library. https://doi.org/10.6342/NTU201603300
Jiang, Q. H. (2013). 結構最佳化之加強兩點指數近似法 [master's thesis, National Taiwan University]. Airiti Library. https://doi.org/10.6342/NTU.2013.00076

延伸閱讀