透過您的圖書館登入
IP:18.191.240.80
  • 學位論文

三軸長行程高速奈米級定位平台之設計開發

Design and Development of a 3-Axis Long Travel and High-speed Nano-scale Positioning System

指導教授 : 黃光裕

摘要


掃描探針顯微術已經被運用在許多科學領域,隨著科技發展需求,高速和長行程掃描已是其發展趨勢,以探討更大範圍的樣本表面變動。本論文的研發目的是設計開發三軸定位系統,使掃描探針顯微術的掃描行程和速度性能增加。三軸奈米級定位系統使用壓電元件作為致動源,以連續驅動方式並藉由控制電壓可獲得奈米等級的位移解析度;再透過撓性位移放大機構來擴大位移行程。為了確保致動器和位移平台之接觸關係與精密線性致動,採用了彈簧導引裝置與可調式預壓機制的配合。位移感測器則採用全像式光學讀取頭,體積尺寸比傳統像散式讀取頭更小,使感測器可以緊緻整合於定位系統中。透過理論分析和有限元素分析模擬,詳細探討設計參數、致動放大機構以及彈簧導引動靜態性能關係,使定位系統得以最佳化。定位系統的控制程式和人機介面建構在LabVIEW軟體平台上,運用電腦可以完成操作參數的設定以及數據展現。 本論文設計之三軸定位系統尺寸為長55mm乘寬55mm乘高50mm,總重量為0.17 kg。X、Y與Z方向最大行程量可達63.2μm、57.8μm、9.7μm,而致動解析度分別為6.2nm、5.6nm、1.0nm,各軸全域非線性度分別為7.4%、6.4%、7.9%,各軸對應的共振頻率為1.12kHz、1.06kHz、3.06kHz。所開發之定位平台系統總體性能,如XY行程量、共振頻率及重量,皆超越市售產品之性能。

並列摘要


The scanning probe microscopy has been successfully used in many technological areas. For fulfilling diverse technological requirements, the high-speed and long-travel scanning function becomes an important development trend to investigate the sample surface variation in a large detecting range. The purpose of this thesis is to develop a three-axis positioning system for enhancing the high-speed and long-travel scanning function of the scanning probe microscopy (SPM). The piezoelectric stack is chosen as the actuator for achieving nano-scale actuation resolution, and the amplifying flexure structure is developed to increase its actuation stroke. Moreover, the parallel spring guide and the preload adjustment device are adopted to induce the stable contact between the actuator and the guiding stage. Because of its small size and high detection resolution, the HOE-pick up head is chosen as the position detection sensor in order to compactly integrated into the positioning system. Through theoretical and finite element analyses, the relationship between the design parameters, the static and dynamic performances of the actuation amplification and the spring guide are studied in detail to optimize the positioning system. The control algorithm and the man-machine interface of this positioning system are built up on the LabVIEW software platform, and the regulation of operation parameters and the data presentation can be carried out by using the computer. The developed positioning system has a weight of 0.17 kg with the size of length 55 mm x width 55 mm x height 50 mm. It can achieve the maximum stroke of 63.2 μm on the X axis, 57.8 μm on the Y axis, and 9.7 μm on the Z axis. The positioning system had nonlinearity of 7.4%, 6.4%, and 7.9% and the positioning resolution of 6.2 nm, 5.6 nm, and 1.0 nm on the X, Y and Z axes, respectively. Moreover, their corresponding resonance frequency of the positioning system is approximately 1.12 kHz, 1.06 kHz, and 3.06 kHz. The overall performance, such as the actuation strokes on the X and Y axes, the resonances frequency and the weight, of this positioning system is superior to current available products.

參考文獻


[9] 劉信廷,”三軸閉迴路奈米定位致動系統之設計開發與特性研究”,國立台灣大學工學院機械工程學系碩士論文,2008。
[18] 王偉珉,”像散式讀取頭角度量測性能之精密檢測系統之研發”, 國立台灣大學工學院機械工程學系碩士論文,2010。
[19] 陳劭侖,” 雙軸奈米級定位系統之設計開發與性能測試”,國立台灣大學工學院機械工程學系碩士論文,2008。
[1] Scire, F.E. and Teague, E.C., “Piezodriven 50-μm Range Stage with Subnanometer Resolution”, Review of Scientific Instruments, Vol. 49, No. 12, 1978, pp.11735-1740.
[2] Xu, W. and King, T., “Flexure Hinges for Piezoactuator Displacement Amplifiers: Flexibility, Accuracy and Stress Considerations”, Precision Engineering, Vol. 19, No. 1, 1996, pp.4-10.

被引用紀錄


邱紹博(2017)。像散式量測系統於掃針式原子力顯微鏡之設計與開發〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201701417

延伸閱讀