透過您的圖書館登入
IP:3.141.202.54
  • 學位論文

應用LCoS面板之多點式彩色共焦顯微形貌量測術

Multi-point chromatic confocal microscopic profilometry using LCoS panels

指導教授 : 陳亮嘉
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


隨著半導體產業的發展,製造與封裝技術都不斷突破新的節點,封裝技術中用來連接電氣訊號的微凸塊、矽穿孔、重分布層等微結構都有高速且大量檢測的需求。目前針對半導體製程微結構的主流量測技術雖仍以雷射掃描法以及結構光投影法為主,然而隨著製程尺度持續微小與密集化,雷射掃描法以及結構光投影法因為光學投影角度的限制逐漸面臨量測瓶頸,這促使彩色共焦顯微術成為未來的發展趨勢。   欲達到線上、高速且全域式共焦量測能力,為本研究之主要目標。為達成此目標,本研究提出下列三項關鍵技術並將其整合實現,關鍵技術為針孔陣列光學設計、全域式軸向色散物鏡設計以及全域式光譜量測技術。為了將上述之關鍵技術整合,本研究提出之新型多點式彩色共焦顯微鏡將分成三個光學模組來設計並實現,其分別為照明模組、彩色共焦模組以及感測模組。照明模組的設計需求為高空間光強均勻度以及遠心並透過常規光學元件實現;彩色共焦模組則是透過遠心色散物鏡與LCoS面板的搭配來動態控制針孔陣列掃描,克服使用數位微鏡裝置導致樣品或感測器必須傾斜的問題;感測模組是利用濾光片對於不同波長的透射率為接近線性的關係來同時量測多個針孔的波長,避免橫向色散導致波長解析與量測速度互相限制。最後將三個模組整合以實現完整的多點式彩色共焦顯微系統。   此創新多點式彩色共焦顯微術可改善傳統彩色共焦顯微術波長解析與量測速度互相限制的問題,其量測表現經由平面鏡及階高塊30次量測的驗證,達到量測範圍100 μm,量測誤差1.8 μm,量測標準差0.445 μm。相較於傳統單點掃描彩色共焦顯微術,以多點式量測原理可有效提升量測效率超過數百倍之譜,大幅提升線上量測速度,將共焦顯微術由目前實驗室儀器的階段有效地推向工業界線上量測的應用上。

並列摘要


As the semiconductor industry flourishes, manufacturing and packaging technologies are continuously breaking new technology nodes. In packaging technology, microstructures used to connect electrical signals, such as micro-bumps, through-silicon vias (TSV) and redistribution layers (RDL) require high-speed and large-scale inspection for in-situ automated optical inspection (AOI). The dominant measurement technology for the microstructures fabricated in the semiconductor processes is still based on the laser scanning method and the structured light projection method. However, these two methods are gradually limited by severe optical occlusion as the microstructure become smaller and denser, which drives chromatic confocal microscopy become one of the essential measuring principle to breakthrough. The proposed chromatic confocal microscope comprises an illumination module, a chromatic confocal module and a sensor module. The illumination module is designed for telecentric and uniform illumination and is implemented by off-the-shelf optical components. The chromatic confocal module achieves dynamic pinhole array control by combining a telecentric chromatic objective and LCoS (liquid crystal on silicon) panels and avoids tiling samples or sensors comparing to digital-micromirror devices. The sensor module can measurement wavelength of multiple pinholes at the same time without lateral dispersion by using an optical filter whose transmittance curve is nearly linear, which can avoid the constraint between measurement speed and wavelength resolution. This innovative multi-point chromatic confocal microscopy improves the constraint between measurement speed and wavelength resolution of conventional chromatic confocal microscopy and the measurement performance has been verified by a flat mirror and a standard step height target. The measurement result of a standard step height target shows 100 μm measurement range, 1.8 μm accuracy and 0.445 μm repeatability. Meanwhile, the measuring speed can be enhanced for more than a few hundred times as the one achieved by the conventional single-point scanning chromatic confocal microscopy. This paves the way for confocal microscopy to be effectively applied in in-situ AOI for achieving high-speed and high-accuracy surface profilometry.

參考文獻


陳亮嘉、范光照、邱奕契及陳金聖,自動化光學檢測,臺灣,高立圖書有限公司,2015。
江柏風、岳俊豪、范哲豪、曾筱晴、彭茂榮、黃慧修、黃鈺媖、葉錦清、楊啟鑫、劉美君及練惠玉,2019半導體產業年鑑,臺灣,工研院產科國際所,2019。
C. T. Ko, Z. C. Hsiao, Y. J. Chang, P. S. Chen, J. H. Huang, H. C. Fu, Y. J. Huang, C. W. Chiang, W. L. Tsai, Y. H. Chen, W. C. Lo and K. N. Chen, “Wafer-level 3D integration with Cu TSV and micro-bump/adhesive hybrid bonding technologies,” 2011 IEEE International 3D Systems Integration Conference (3DIC), 2011 IEEE International, Osaka, 2012, pp. 1-4, doi: 10.1109/3DIC.2012.6262949.
M. Minsky, “Microscopy Apparatus,” U.S. patent, no. 3013467A, 1961.
D. M. Maurice, “A scanning slit optical microscope.,” Investigative Ophthalmology, vol. 13, no. 12, pp. 1033-1037, 1974.

延伸閱讀