透過您的圖書館登入
IP:18.191.229.217
  • 學位論文

氯化硼亞

Electronic Structures and Interfacial Characteristics at the Application of (Chloro[subphthalocyaninato]boron(III) in Organic Light-Emitting Diode Devices

指導教授 : 吳志毅

摘要


摘 要 酞菁衍生物(Phthalocyanine derivatives)因為其特殊的物理與化學性質,在化學工業與光 電產業中被廣泛的利用。本論文中, 首次將氯化硼亞酞菁 (chloro[subphthalocyaninato]boron(III), SubPc)成功的應用至有機發光二極體(OLEDs)內,並 探討SubPc 應用至有機半導體元件上所扮演的角色。首先,針對有機發光二極體的元件架 構做簡單介紹,並討論應用至各層時,有機材料所應該具備的相關物理與化學特性。介面 特性探討上,對於半導體介面上所適用的理論來簡單的介紹。最後,文獻探討部分將對於 酞菁衍生物的發展歷程有初步的介紹。並且對於應用至陽極注入時,酞菁衍生物在電洞注 入與傳輸介面上所扮演的角色跟運作原理做進一步的說明。本篇論文的研究動機與亟需探 討項目也會在第一章內提及。在進入實質內容討論前,先介紹實驗儀器與能譜分析所需的 公式。除此實驗探討之外,在第三章會提及運用第一原理(First principle)所需要的理論與方 法。 實驗部分,經由元件的製作,成功的實現了以SubPc 跟NPB 為電洞注入層的有機發光二 極體元件。光電子能譜的實驗上,SubPc 以極低蒸鍍速率鍍到NPB,蒸鍍過程中量測價帶 能譜(valence band spectrum)與核電子能譜(core-level spectrum)。經由能譜上的變化,推論出 NPB 與SubPc 兩者於介面上的反應方式。並且藉由前述的第一原理,先模擬分子結構至最 低能量,進而獲得模擬的價帶能譜與分子軌域圖樣(molecular orbital pattern)。藉由理論與實 驗能譜的對照,進一步佐證在實驗結果上所獲得的推論。陰極結構的應用上,將SubPc 與 LiF 以適當的比例運用至電子注入層,實現了元件電性的提升。個別的針對陰極結構的 Alq3SubPc 與SubPcLiFAl 的能譜來解釋元件電性提升的原因。除此之外,鹼金屬與有機 半導體材料在介面間的變化也是近年來相當有趣的課題。因此,本論文也會對鋰(lithium) 原子與SubPc 介面間,在價帶能譜與核電子能譜上的變化來討論。最後,本論文的實驗與 理論結果在第六章做總結,並提出未來可行的研究方向以建議後進學者。

並列摘要


Owing to their remarkable physical and chemical properties, phthalocyanine-derivatives are widely employed in chemical and optoelectronic industry. In this dissertation, we successfully apply the chloro[subphthalocyaninato]boron(III) (SubPc) as the carrier injection layer of OLEDs. Therefore, the main issue of this dissertation is discussed the roles of SubPc in organic semiconductor devices. First of this dissertation, we will briefly introduce the configuration of OLEDs, and the related characters of organic material which is employed at the each layer of OLEDs need to be contained. In the interfacial characteristics, we will discuss the working model of semiconductor interface. Then, the developed history of phthalocyanine-derivatives and research motivation will discuss in the final section of chapter 1. Before we start the discussion of experimental results of dissertation, spectral analysis and experimental instruments are studied in chapter 2. Then, the method of theoretical simulations and the first principle will mention in the chapter 3. Via the fabrication of OLED devices, we successively realized the OLEDs device with the hole injection layer of co-doping NPB and SubPc. As the results of photoemission spectra, we can measure the core-level spectrum and valence band spectrum, and then the chemical reaction between NPB and SubPc at extreme low evaporation rate can be deduced. Simulation results also provided another viewpoint to prove the inference which concluded from the experimental results. . Optimization of geometrical structure is completed at the lowest molecular energy, and then we applied that structure to simulate the valence spectrum and molecular orbital pattern at frontier energy state. At the cathode application, we realized the improvement of device performance with the co-evaporation of LiF and SubPc and explained it with photoemission spectrum. Interfacial chemical reaction of lithium and SubPc are also investigated in the chapter 5. Finally, the future work, theoretical and experimental results are summed at the final chapter.

參考文獻


12. VanSlyke, S., et al., Electroluminescent device with organic electroluminescent medium. 1991,
1. Tang, C.W. and S.A. Vanslyke, Organic Electroluminescent Diodes. Applied Physics Letters,
3. Burroughes, J., et al., Light‐emitting diodes based on conjugated polymers. Nature, 1990.
Massachusetts (USA): AVS.
7. Romero, D.B., et al., Effects of doping in polymer light‐emitting diodes. Applied Physics

延伸閱讀


國際替代計量