透過您的圖書館登入
IP:3.137.187.233
  • 學位論文

雙核心自復位消能斜撐之發展與驗證

Development and Validation for Double-Core Self-Centering Energy Dissipative Braces

指導教授 : 周中哲

摘要


預力自復位斜撐是利用斜撐中之拉力構件束制斜撐中之受壓構件,並在斜撐受拉與受壓下提供自行復位之能力(在大變形下有回到零殘餘變形的能力)。而傳統自復位斜撐之變形能力受制於拉力構件之線彈性範圍之應變量,使目前自復位斜撐之極限應變量僅1.3%,對應之層間位移角為2%,而拉力構件之應變量達1.9%。線彈性應變範圍超過2%之材料鮮少,且不易取得,大部分以複合材料為主。本研究提出一新型預力自復位斜撐,增加一核心受壓構件與一組拉力構件,使斜撐之變形量在拉力構件相同應變下可達傳統自復位斜撐變形量之兩倍(或是在相同斜撐變形量下,新型斜撐之拉力構件應變量減少一半約1.0%)。本研究設計四組新型雙核心自復位斜撐與驗證其力學行為,其中四組斜撐所使用之拉力構件分別為D16鋼角線、D22玻璃纖維棒、D29玻璃纖維棒與D13碳纖維棒。實驗結果顯示雙核心自復位斜撐之力學傳力機制與理論預測相符,而對應1.2%斜撐應變與2%層間位移角之拉力構件應變量分別為0.8%、1.05%、0.9%與1.09%,皆與預測之應變量接近,並大量降低拉力構件之線彈性應變需求量。試驗中除了使用鋼角線之試體有預力損失現象,其餘三支試體皆有良好的自復位行為。本研究使用ABAQUS有限元素軟體分析四支試驗試體之行為,分析結果與預測及試驗結果符合,並對於大小預力、大小摩擦力及不同材質之拉力構件作參數研究,了解在預力大於摩擦力時才有完整之自復位行為,而摩擦力之大小決定其消逝能量之大小,但大預力會導致變形能力受限。而拉力構件之材質只影響迴圈之後勁度,並且該線彈性應變範圍影響斜撐之變形能力。

關鍵字

雙核心 自復位 消能 斜撐 複合材料 玻璃纖維 碳纖維

並列摘要


Self-Centering Energy Dissipative Brace is a kind of brace which uses tendons to constrain compression elements of the brace and provide self-centering properties under tension and compression force (restore to zero residual deformation). Traditional self-centering energy dissipative brace’s deformation capacity relies on the elastic deformation capacity of the tendons used inside the brace, and results in limitation of the braces’ deformability. Traditional SCED brace has a maximum strain of 1.3% when the tendons reach 1.9% strain and the frame reaches 2% inter-story drift. Tendons required to have large elastic strain mainly uses composite material. However, tendons having over 2% elastic strain material properties are rare and seldom used or researched. This research develops a new kind of SCED brace by adding a second core element and another group of tension elements which doubles the deformation capacity compared to traditional SCED brace while using tension elements comprised of the same material properties (or largely reduce the elastic strain demand of the tendon elements to 1% under the same brace deformation when compared to traditional SCED brace). This research designed four specimens to validate the double core SCED brace which uses different materials for its tendons. Four specimens’ tendon uses D16 steel strand, D22 glass fiber, D29 glass fiber and D13 carbon fiber respectively. The results show that the mechanism of double core SCED brace is consistent with prediction. The test results and prediction of tendon strain is close which is 0.8%, 1.05%, 0.9% and 1.09% for specimen 1 to 4 respectively while the brace has a 1.2% strain corresponding to 2% inter-story drift. The result shows that double core SCED brace can significantly reduce the demand for tendon elastic strain. Except specimen 1 due to loss of pre-tension force has poor behavior in self-centering, specimen 2 to 4 have good behavior in self-centering with no pre-tension loss. This research also uses the finite element software ABAQUS to analyze double core SCED brace behavior and compare with the testing results which is proved similar. The parametric study of double core SCED brace we choose different pre-tension force, different friction force, and different tendons to observe the difference in brace behavior. Results indicate that the lager the friction force is the larger the energy dissipation there will be, yet in order to have full self-centering behavior, the pre-tension force should be larger than friction force. However the larger the pre-tension force is the smaller the deformation capacity there is left. Unlike pre-tension force and friction force, the difference of tendons only effect the post-stiffness of the response and limits the deformation capacity due to its limitation in elastic strain.

參考文獻


1. ABAQUS. Standard user’s manual version 6.3. Pawtucket, RI: Hibbitt, Karlsson & Sorensen, Inc.; 2003.
2. AISC (American Institute of Steel Construction), Seismic provisions for structural steel buildings, Chicago, IL, 2005.
3. AISC (American Institute of Steel Construction). Manual of steel construction load and resistance factor design. Chicago, IL; 2005.
4. C. C. Chou, J. H. Chen (2010). Tests and analyses of a full-scale post-tensioned RCS frame subassembly.” Journal of Constructional Steel Research 66: 1354-1365
5. Chou C-C, Liu, J-H, Pham D-H. 2011. Steel buckling-restrained braced frames with single and dual corner gusset connections: seismic tests and analyses. Earthquake Engineering and Structural Dynamics (DOI: 10.1002/eqe.1176, available on line 2011/10).

被引用紀錄


林春霖(2018)。評估抗彎構架跨數對斜撐構架之耐震性能:挫屈束制與自復位斜撐震動台試驗與分析〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201800462
凌郁婷(2016)。雙核心自復位斜撐與夾型挫屈束制斜撐於臺灣實際高層建築之耐震行為:非線性地震歷時分析與斜撐耐震試驗〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201600880
蕭佳宏(2015)。雙核心自復位斜撐與夾型挫屈束制斜撐對構架影響:耐震實驗與動力分析〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2015.01548
陳澤邦(2015)。鋼造實尺寸二層樓雙核心自復位斜撐構架耐震試驗與有限元素分析〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2015.01523
吳宗翰(2014)。新型鋼造雙核心自復位斜撐構架設計與耐震試驗行為〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2014.10499

延伸閱讀