透過您的圖書館登入
IP:18.118.167.22
  • 學位論文

應用雙光子聚合技術製造平面及曲面上之指叉型電容

Fabrication of interdigital capacitors on planar and curved surfaces by two-photon polymerization technology

指導教授 : 劉霆

摘要


本文應用雙光子聚合技術製造平面及曲面上的指叉型電容,證明了雙光子聚合技術相比於其他用於製造 3D 電子元件的加工技術,有更良好的空間適應性及較省時的加工流程。本研究中所使用的雙光子聚合製造系統整合了飛秒雷射、掃描振鏡、壓電平台、分光鏡、CMOS 相機等元件,並使用 Ormocomp®作為光敏感樹酯。由於自行發展的 CAM 系統是依據使用者給定的切層參數,將 CAD 模型作水平切層,加工也會依據切點資料一層一層的加工,而每一層又是一個點一個點的固化。10 倍鏡被用以加工 2D 的平面指叉型電容,每個指叉型電容的加工時間為 2 小時,而加工出的平面指叉型電容都具有 930μm x 410μm 的 xy 尺寸、22μm 的指寬、11μm的指間距。F-theta lens 被用以加工 3D 的曲面指叉型電容,加工時間為 1 小時,而加工出的曲面指叉型電容具有 720μm x 250μm 的 xy 尺寸、20μm 的指寬、18μm 的指間距、及 2.5mm 的曲率半徑。

並列摘要


TPP technique is applied to fabricating interdigital capacitors on planar and curved surface in this thesis, which demonstrated that TPP technique possesses higher adaptability in space and is time-saving compare to other technique for fabrication of 3D electronics. The TPP micro fabrication system in this thesis integrates equipment such as femtosecond laser, galvanometer scanner, piezo stage, beam splitter, and CMOS camera, etc. Photosensitive resin used in this thesis is Ormocomp®. Since CAD model is horizontally sliced by the self-developed CAM system according to user-defined slicing parameters, micro fabrication is conducted layer by layer accordingly, and each layer is cured point by point. For fabricating 2D planar interdigital capacitors, a 10x objective lens is used. Fabrication time takes about 2 hours for each, and all of the fabricated planar interdigital capacitors have the size of 930μm by 410μm in xy dimensions, 22μm interdigit width, and 11μm interdigit gap. For fabricating 3D curved surface interdigital capacitor, an F-theta lens is used. Fabrication time takes about 1 hours, and the 3D interdigital capacitor has the size of 720μm by 250μm in xy dimensions, 20μm interdigit width, 18μm interdigit gap, and 2.5 mm radius of curvature.

參考文獻


[1] Sun, H. B., Matsuo, S., Misawa, H. (1999). Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin. Applied physics letters, 74(6), 786-788.
[2] Scrimgeour, J., Sharp, D. N., Blanford, C. F., Roche, O., M., Denning, R. G., Turberfield, A. J. (2006). Three‐Dimensional Optical Lithography for Photonic Microstructures. Advanced Materials, 18(12), 1557-1560.
[3] Sun, Z. B., Dong, X. Z., Chen, W. Q., Nakanishi, S., Duan, X. M., Kawata, S. (2008). Multicolor polymer nanocomposites: in situ synthesis and fabrication of 3D microstructures. Advanced materials, 20(5), 914-919.
[4] Wang, W. K., Sun, Z. B., Zheng, M. L., Dong, X. Z., Zhao, Z. S., Duan, X. M. (2011). Magnetic nickel–phosphorus/polymer composite and remotely driven three-dimensional micromachine fabricated by nanoplating and two-photon polymerization. The Journal of Physical Chemistry C, 115(22), 11275-11281.M.
[5] Wu, D., Chen, Q. D., Niu, L. G., Wang, J. N., Wang, J., Wang, R., ... Sun, H. B. (2009). Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices. Lab on a Chip, 9(16), 2391-2394.H.-B.

延伸閱讀