透過您的圖書館登入
IP:3.129.211.6
  • 學位論文

應用於第五代行動系統與衛星通訊之混頻器設計與整合

Design and Integration of Mixer for 5G Mobile System and Satellite Communication Applications

指導教授 : 黃天偉
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


近年來,關於5G行動系統和衛星通訊開發應用之毫米波混頻器研究相當多,若在使用頻寬加大的情況下,通訊系統可以提供更高的傳輸速率。無線收發機中,混頻器是相當重要的元件,且其線性度始終是發射端的關鍵問題,高速傳輸的需求促使晶片研究往毫米波(MMW)頻率發展,而具有寬頻帶以及高線性度之特性將更符合高頻無線通訊的應用。 本論文分為三個部分。第一部分介紹了改善混頻器線性度之研究。兩顆使用0.18-μm CMOS製程Ka波段的升頻器,採用LO電壓波增強的線性化技術,可提高升頻器的線性輸出功率。不需透過複雜的線性化電路設計,即有輸出功率線性化的功能,在被動式次諧波混頻器,其1-dB壓縮輸出功率點提高了7.9 dB,同時轉換增益也提高了1.2 dB;而在被動式基頻混頻器可表現出–2.7 dBm的1-dB壓縮輸出功率點和–8.5 dB的轉換增益。 第二部分提出一顆0.18-μm CMOS製程下19 GHz鏡像邊帶抑制之降頻器整合多相位濾波器。LO四路正交分配器中使用了傳輸線和電感補償機制,可以有效地改善IQ不平衡和提供較準的90度相位延遲,進而在使用頻帶中產生更高的鏡像邊帶抑制效果。此降頻器於RF接收頻率15至22 GHz有平坦的轉換增益–15±1 dB,且於17.5至21 GHz擁有鏡像邊帶抑制大於30 dBc之特性。 最後一章介紹衛星通訊應用的相位陣列系統接收機之研究。首先我們整合了系統鏈需要的單晶片,並將四路相位陣列系統中所有的小整合電路模組化。實行封裝及設計電路板時,必須考慮一些模組化所產生的問題,如: 鎊線(wire bonding)效應、旁通電容設計、偏壓整合…等等。比較模組化前後電路特性的差距,並加以除錯和討論改良。最後,本章將描述四路相位陣列系統接收機的簡單測試與結果討論,總結未來需要實行以及改善的工作。

並列摘要


There are many researches on frond-end mixer at millimeter-wave for developing 5G wireless system and satellite communication in recent years. With bandwidth becoming greater, the wireless communication system can provide multiple Gbps of data rates. In wireless transceiver system, mixer is a key component and its linearity is always the crucial issue for transmitter design. The demand of high-speed transmission has motivated the designers to explore millimeter-wave (MMW) frequency with broader bandwidth and higher linearity for communication system applications. This thesis is divided into three parts. The first part presents the research on improvement of linearity for RF frond-end mixer. Two Ka-band up-conversion mixers are fabricated in 0.18-μm CMOS process with LO boosting linearization technique, which improves linear output power and conversion gain of up-conversion mixer in communication system. The resistive sub-harmonic mixer provides an improvement of OP1dB with 7.9 dB and conversion gain with 1.2 dB. The resistive fundamental mixer achieves a high OP1dB of –2.7 dBm and conversion gain of –8.5 dB without complicated circuit of linearization in the desired frequencies. The second part of the thesis is the proposed 19 GHz single-sideband down conversion mixer with poly-phase filter integration in 0.18-μm CMOS technology. With the compensation lines and inductors used in LO four-way quadrature splitter, the performance of IQ imbalance and 90-degree phase delay can be improved effectively, resulting in higher sideband suppression in operated frequencies. The down-conversion mixer has a flatness conversion gain of –15±1 dB from RF frequency of 15 to 22 GHz, and sideband suppression ratio of 30 dBc from 17.5 to 21 GHz. In the last section, a research of phased-array receiver system integration for satellite communication is reported. The single chips are integrated with each other in the first step, and all the small integration circuits in four-way phased-array system will be modularized. With packaging in these chips, some problems with modularization are taken into consideration. For example, wire bonding effect, off-chip bypass capacitors design, dc integration…and so on. By comparing the performance before and after modularization, we can do some debugs and improvement to these modules. At the end, a simple testing and future works of phased-array receiver system are depicted.

參考文獻


[1] J.-H. Chen, C.-C. Kuo, Y.-M. Hsin, and H. Wang, “A 15–50 GHz broadband resistive FET ring mixer using 0.18-μm CMOS technology,” IEEE MTT-S Int. Dig., pp. 784-787, 2010.
[2] H.-K. Chiou and H.-T. Chou, “A 0.4 V microwatt power consumption current-reused up-conversion mixer,” IEEE Microwave and Wireless Components Letters, vol. 23, no. 1, pp. 40-42, Jan. 2013.
[3] A. Verma, K.-K. O, and J. Lin, “A low-power up-conversion CMOS mixer for 22 29-GHz ultra-wideband applications,” IEEE Trans. Microwave Theory & Tech., vol. 54, no. 8, pp. 3295-3300, Aug. 2006.
[4] Y.-S. Won, C.-H. Kim, and S.-G. Lee, “A 24 GHz highly linear up-conversion mixer in CMOS 0.13 μm technology,” IEEE Microwave and Wireless Components Letters, vol. 25, Issue 6, pp. 400-402, Jun. 2015.
[5] T. Xi, S. Huang, S. Guo, D. Huang, S. Chakraborty, and P. Gui, “A new passive CMOS mixer with LO shaping technique for mmWave applications,” IEEE Microwave and Wireless Components Letters, vol. 26, no. 6, pp. 455-457, Jun. 2016.

延伸閱讀