透過您的圖書館登入
IP:3.15.226.173
  • 學位論文

應用於第五代行動通訊之功率放大器與混頻器的研究

Research of Power Amplifier and Up-Conversion Mixer for 5G Mobile Communications

指導教授 : 王暉
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文包含兩個部分都是希望運用在第五代行動通訊系統中。第一部分應用在30到40 GHz寬頻連續反F類功率放大器,使用65奈米金氧半場電晶體製程設計。第二部分是應用於28 GHz高線性度升頻器,使用28米金氧半場電晶體製程設計。 論文中首先提出了一個應用在30到40 GHz連續模式反F(CCF-1)功率放大器設計以同時達到寬頻且高效率的表現。此電路為了實現連續反F操作,利用輸出變壓器並且在其中加入電容用來實現理想基頻與諧波阻抗設計。我們可以透過這種方式設計來減少匹配電路的設計複雜度與損耗,除此之外,在本章當中也討論放大器的線性度且電路的AM/PM失真因為輸出諧波匹配而有一定程度的改善。量測結果顯示本文提出的功率放大器在34 GHz有17.9 dBm的飽和輸出功率且大訊號頻寬包含從30到40 GHz,在此輸出功率下仍有35.8%功率附加效益,還得到15 dBm輸出功率的增益1dB壓縮點。在調變量測使用64-QAM的訊號下,此電路達到400MHz調變頻寬且有9.2 dBm的平均輸出功率和12.5 %平均功率附加效率,且錯誤向量大小(EVM)小於-28 dB。 另外提出一個在轉導級使用二階交互調變注入技術達到高線性度的升頻器,因此透過混和低頻輸入訊號和二階交互調變訊號可以在轉導級產生一個正的三階交互調變訊號,並且透過電晶體操作在三級區來放大此訊號,最後本電路展現出在寬輸入功率範圍下都有三階交互調變功率抑制。量測結果顯示此升頻器有-6.4 dB的轉換增益與-2.2 dBm輸出功率的增益1dB壓縮點,直流功率損耗為19 mW,而雙頻量測(two-tone measurement)則顯示明顯的三階交互調變功率抑制且輸出三階截點功率為10.2 dBm。除此之外,在調變訊號量測使用256-QAM的訊號下,此電路展現出在有三階交互調變失真抑制下輸出功率可以改善。

並列摘要


This thesis is composed of two parts and both of them aim for the fifth-generation wireless communication. The first part is a 30-40 GHz broadband power amplifier with continuous Class-F-1 matching fabricated in 65-nm CMOS process. The other exhibits a 28-GHz high linearity up-conversion mixer fabricated in 28-nm CMOS process. At first, a 30-40 GHz continuous-mode inverse Class-F (Class-F-1) power amplifier design to achieve both high efficiency and wide bandwidth is presented. The proposed fundamental and harmonic matching are achieved using the output transformer with an embedded capacitor for continuous inverse class-F operation. In this way, we can reduce the harmonic load complexity and insertion loss significantly. Moreover, linearity of the power amplifier is discussed and the improvement of AM-PM distortion due to harmonic output matching is also exhibited. Therefore, the proposed continuous Class-F-1 PA shows a saturated output power (Psat) of 17.9 dBm, output power bandwidth (30 to 40 GHz) with 35.8 % peak PAE, and output 1-dB compression point (OP1dB) of 15.0 dBm at 34 GHz. When tested with a single-carrier 64-QAM signal, this PA achieves bandwidth of 400 MHz, 9.2-dBm average output power, and 12.5% average PAE under error vector magnitude (EVM) -28 dB. The other part is a high linearity up-conversion mixer with a second-order intermodulation (IM2) signal injection technique adopted in the transconductance stage. So, the positive third-order intermodulation (IM3) signal is generated from mixing the IM2 signal and IF input signal with transistors biasing in triode region. The proposed mixer achieves the IM3 power improvement of 10 dB in a wide IF power range with the proposed technique. The measurement results demonstrate a conversion gain of -6.4 dB and output 1-dB compression point (OP1dB) of -2.2 dBm with 19 mW. The two-tone measurement results exhibit a conspicuous improvement of IM3 and achieves 10.2 dBm output third-order intercept point (OIP3). Furthermore, with the modulation measured results using single-carrier 256-QAM signal, the proposed mixer also exhibits an output power level enhancement of 3 dB when the linearizer turns on.

並列關鍵字

5G CMOS Power amplifier Mixer

參考文獻


[1] 3GPP Release 16 [Online] https://www.3gpp.org/release-16
[2] K. Kibaroglu, M. Sayginer, T. Phelps and G. M. Rebeiz, "A 64-element 28-GHz phased-array transceiver with 52-dBm EIRP and 8–12-Gb/s 5G Link at 300 meters without any calibration," IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 12, pp. 5796-5811, Dec. 2018.
[3] H. Jia, C. C. Prawoto, B. Chi, Z. Wang and C. P. Yue, "A full Ka-band power amplifier with 32.9% PAE and 15.3-dBm power in 65-nm CMOS," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 9, pp. 2657-2668, Sept. 2018.
[4] S. N. Ali, P. Agarwal, S. Gopal, S. Mirabbasi and D. Heo, "A 25–35 GHz neutralized continuous Class-F CMOS power amplifier for 5G mobile communications achieving 26% modulation PAE at 1.5 Gb/s and 46.4% peak PAE," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 2, pp. 834-847, Feb. 2019.
[5] T. Li, M. Huang and H. Wang, "Millimeter-wave continuous-mode power amplifier for 5G MIMO applications," IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 7, pp. 3088-3098, July 2019.

延伸閱讀