透過您的圖書館登入
IP:3.145.77.156
  • 學位論文

以化學氣相沉積法成長六方氮化硼於多晶銅箔上

Growth of Hexagonal Boron Nitride on Polycrystalline Copper Foil via Chemical Vapor Deposition

指導教授 : 陳俊維
共同指導教授 : 溫政彥(Cheng-Yen Wen)
本文將於2026/06/14開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


六方氮化硼在許多領域中都是極具潛力的候選人,特別是介電層、保護性鍍膜或透明薄膜。在此實驗中,我們系統性地探討製程參數對於以低壓化學氣相沉積法成長六方氮化硼於多晶銅箔上的影響;包含前驅物的量、前驅物的加熱溫度、爐管溫度、氫氣流量於退火及成長階段等對於六方氮化硼成長的影響。低通式的化學氣相沉積製程可有效減少成長源氣氛進入爐管的量,使成核密度降低,且提升結晶性。於成長階段,氫氣流量大時,成長由氫氣的蝕刻效果主導;氫氣流量小時,成長則由氫氣的催化效果主導。於退火階段,越大的氫氣流量使得銅箔表面狀態越平整以減少異質成核點,有利於成長出典型地三角形的六方氮化硼晶域。我們也發現六方氮化硼適合作為光沉積白金的模板,其為高表面積的奈米粒子,不僅可以提供優良的產氫效率,且使入射光仍能進入矽基板被吸收以提供元件足夠的光電壓。以光電化學的量測,此元件的起始電位達0.131 V,飽和電流密度為27 mA/cm2。

並列摘要


Hexagonal boron nitride (h-BN) is the one of potential candidates in various applications, particularly, as dielectric layer, protective coating, or transparent membrane. In this work, using low pressure chemical vapor deposition (LPCVD), we systematically investigated the effect of different parameters on growth of h-BN/polycrystalline copper foil, including the amount of precursor, heating temperature for evaporating the precursor, furnace temperature, and carrier gas. In order to lower nucleation density and improve crystallinity of h-BN, low-pass CVD system was used to dramatically decrease the flow of precursor introduced to furnace. In the growth step, etching hydrogen dominates the process when larger flow of hydrogen is introduced, and catalytic hydrogen dominates the process when smaller flow of hydrogen is introduced. In the annealing step, copper surface is flattened to lower heterogeneous nucleation when larger flow of hydrogen is introduced. We also find that h-BN is a good template for photo-depositing platinum nano-particles (Pt NPs). Photo-deposited Pt NPs not only exhibits better efficiency for hydrogen evolution reaction (HER), but also provides appropriate area of silicon for absorption of incident light, as the Pt NPs do not fully cover the silicon. For the photovoltaic applications, this device’s onset potential and saturated current density achieves 0.131 V and 27 mA/cm2, respectively.

參考文獻


[1] Dean, Cory R., et al. "Boron nitride substrates for high-quality graphene electronics." Nature nanotechnology 5.10 (2010): 722-726.
[2] Zhang, Xingwang, et al. "Recent progress of boron nitrides." Ultra-Wide Bandgap Semiconductor Materials. Elsevier (2019): 347-419.
[3] Schwetz, Karl A. "Boron carbide, boron nitride, and metal borides." Ullmann's Encyclopedia of Industrial Chemistry (2000).
[4] Wang, Jingang, et al. "Graphene, hexagonal boron nitride, and their heterostructures: properties and applications." RSC advances 7.27 (2017): 16801-16822.
[5] Liu, Fang, et al. "Ab initio calculation of ideal strength and phonon instability of graphene under tension." Physical Review B 76.6 (2007): 064120.

延伸閱讀