透過您的圖書館登入
IP:216.73.216.156
  • 學位論文

利用專注機制神經網路之使用者興趣轉移預測

An Attention-based Neural Network Model for Interest Shift Prediction

指導教授 : 鄭卜壬

摘要


推薦系統的設計總是致力於推薦符合使用者興趣的物品,然而使用者的興趣轉移卻很少被納入考量。我們觀察到音樂推薦平台如YouTube,使用的推薦策略也是以同歌手或同歌名歌曲為主,它背後假設使用者總是會想聽類似的歌曲,卻沒有考慮使用者厭倦的情況。為了提供一個更貼近使用者的體驗,這幾年有越來越多研究致力於將新鮮感加入推薦清單中;然而,卻沒有任何研究提及「使用者什麼時候會興趣轉移」這個問題,而這個問題將會影響我們要採取的推薦策略。因此在這篇論文中,我們提出一個新模型來預測使用者的興趣轉移。透過近年在各領域獲得成功的深度學習,我們試著建立使用者心理狀態的隱表示法,並透過專注機制模型以找出興趣轉移的關鍵。實驗結果顯示我們提出的模型在準確率和解讀性上均有良好的表現。

並列摘要


Recommendation systems have mainly dealt with the problem of recommending items to fit user preferences, while the dynamicity of user interest is not fully considered. We observe that music streaming platforms like YouTube always recommend songs that either from the same artist or with the same title, assuming that users have a static interest in similar items, but ignore the fact that we get satiated easily with repeated consumptions. To provide a more appealing user experience, recent developments in recommendation system have focused on introducing novelty in the recommendation list; however, none of these works try to discuss ``when will the users shift their interest?", the key problem that determines our strategies to recommend new items or similar items. In this work, we present a novel model for interest shift prediction. By the state-of-the-art deep learning techniques that excel in extracting high-level knowledge, we try to construct the latent representations of mental states, and apply the attention mechanism on our model to automatically detect the shifting patterns in the listening records. Experiments and case studies show that our models can achieve good accuracy as well as interpretability.

參考文獻


[3] D. G. M. Barbara E. Kahn, Manohar U. Kalwani. Measuring variety-seeking and reinforcement behaviors using panel data. Journal of Marketing Research, 23(2):89–100, 1986.
[9] M. Glanzer. Curiosity, exploratory drive, and stimulus satiation. Psychological Bulletin, 55(5):302, 1958.
[13] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997.
[22] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen. Improving recommendation lists through topic diversification. In Proceedings of the 14th international conference on World Wide Web, pages 22–32. ACM, 2005.
[1] A. Anderson, R. Kumar, A. Tomkins, and S. Vassilvitskii. The dynamics of repeat consumption. In Proceedings of the 23rd international conference on World wide web, pages 419–430. ACM, 2014.

延伸閱讀