透過您的圖書館登入
IP:18.219.22.169
  • 學位論文

臺灣地區飲用水中藥物及個人保健用品流布調查及其於淨水處理之效能評估

Occurrences of Pharmaceuticals and Personal Care Products in Drinking Water of Taiwan and Assessment of Their Removals in Water Treatment Processes

指導教授 : 王根樹
本文將於2025/12/31開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


近年來,藥物及個人保健用品 (Pharmaceuticals and Personal Care Products, PPCPs) 由於其對生態系統和人類健康之潛在危害而備受關注。文獻顯示從水、土壤和空氣中都能偵測到許多不同種類的藥物及個人保健用品。為了了解這些物質可能對人們造成的影響,本研究調查臺灣地區淨水場原水、清水、家戶自來水及市售瓶裝水中藥物及個人保健用品的流布情形。此外,也透過實驗室模擬飲用水淨水處理流程以評估不同處理方式對這些化學物質的去除效果。 本研究分別於2018年二月、六月和十一月,以及2020年二月、六月和十月採集臺灣地區八個淨水場的原水及清水。此外也採集特定淨水場週邊的家戶自來水,以及市面上販售不同品牌之瓶裝水,一併於實驗室進行24種藥物及個人保健用品的檢測分析。調查結果顯示大多數物質於水樣中檢測出濃度都很低,僅部分樣品檢測出濃度較高的布洛芬(55.6 ng/L)、二苯甲酮(111.9 ng/L)、咖啡因 (442.5 ng/L)和二乙基甲苯酰胺(515.6 ng/L)。 此外,本研究也在實驗室中模擬淨水場傳統處理流程,藉此評估淨水場對這些化學物質的處理效能。實驗室模擬結果顯示,前加氯是傳統處理流程中去除藥物及個人保健用品的關鍵步驟。該步驟可以去除水中大部分的雌激素類、對羥基苯甲酸酯類、氧苯酮和對乙酰氨基酚。然而卻無法有效去除大部分鎮痛解熱劑、咖啡因、二乙基甲苯酰胺和二苯甲酮。從實驗室模擬結果也觀察到,單純的砂濾無法去除任何本研究探討的藥物及個人保健用品。但是在將部分濾砂替換成無煙煤後,便可去除部分對羥基苯甲酸酯(11.9%- 41.2%)、雌激素(18.2%-44.8%)、防曬用品(37.5%-68.8%)和萘普生(30.1%)。然而,大部分鎮痛解熱劑、咖啡因和二乙基甲苯酰還是不能被有效去除。 有鑒於傳統飲用水處理流程對特定的化學物質處理效果不佳,本研究進一步比較了加氯、紫外線、紫外光/氯和紫外光/過氧化氫等不同處理技術對藥物及個人保健用品的去除效果。研究考量的變因包括了反應時間、氧化劑濃度、pH 值、基質和對消毒副產物生成的影響。結果顯示,當將氧化劑濃度提高時,可以觀察到對特定化學物質的去除效果略有改善。而pH值則會改變氯及紫外光和一些物質的反應性,也會改變紫外光/氯的反應能力,然而對紫外光/過氧化氫則觀察不到pH值的影響。在基質的作用下,各種處理技術對大部分藥物及個人保健用品的去除效果皆略降,但降幅多在 15% 以內。研究觀察到單純使用紫外光無法有效去除乙酰基水楊酸、布洛芬、二苯甲酮、氧苯酮、咖啡因及大多數雌激素等物質。但當紫外光搭配氯或是過氧化氫使用時,對本研究選擇的化學物質都能觀察到去除效果明顯提升的現象(紫外光/氯 ≥ 56.5%,紫外光/過氧化氫 ≥ 27.6%)。然而,儘管紫外光/氯對藥物及個人保健用品的去除效果比紫外光/過氧化氫來得好,但後者同時也能降低水中消毒副產物的濃度。相比之下,紫外光/氯反而會提高水中三鹵甲烷、鹵乙腈和鹵代酮的濃度,提升的比例分別為25%、35%和115%。 在本研究中,選擇了 12 種濃度或檢測頻率較高的藥物及個人保健用品,透過蒙地卡羅模擬進行暴露以及健康風險評估。結果顯示,二乙基甲苯酰胺的危害商數(HQ)較其他化學物質來得高,但也只有10-5左右。若針對高風險族群的民眾進行模擬,則二乙基甲苯酰胺、咖啡因和二苯甲酮的HQ值較其他物質來得高,它們的HQ值分別為2.57E-05、3.10E-05 和 4.19E-05。其他化學物質經程式模擬計算出來的HQ值則在10-6到10-8不等。若將樣品按採樣季節分為春、夏、秋季進行比較,則會觀察到大多數藥物及個人保健用品導致的HQ值在夏季時較高,秋季和春季的值沒有顯著差異。另外,將從兩淨水場附近家戶收集到的樣品進行比較發現,其中一區由二乙基甲苯酰胺、咖啡因和二苯甲酮導致的HQ值比另一區高出了十倍。而國產瓶裝水和進口瓶裝水中化學物質導致的HQ值差別不大,大多處於同一個數量級。唯一值得注意的物質是二苯甲酮,它導致的HQ值在進口瓶裝水中高於國產瓶裝水。 總體而言,在本研究選擇的24種藥物及個人保健用品中,沒有任何一種化學物質在任何水中的HQ值大於1。這顯示在單獨考慮時,飲用水中這些化學物質對人們產生的健康風險皆極低。然而應該注意的是,飲用水中多種化學物質的混合毒性仍可能對人們造成危害。在未來,研究的重點應該關注於開發能夠快速篩選具有高危害潛力的污染物,並對這些物質進行混合物健康風險評估,以保障民眾的健康。

並列摘要


Pharmaceuticals and personal care products (PPCPs) have been of concerns for their potential threats to ecosystems and human’s health for decades. PPCPs have been detected in water environments worldwide and have been identified in water sources and finished water. To elucidate the potential exposure of PPCPs in drinking water, this study assessed the occurrences and treatment efficiencies of PPCPs in the drinking water of Taiwan. Raw and finished water samples collected from eight drinking water treatment plants (DWTPs) in different seasons of 2018 and 2020 were analyzed. Most of the water samples from the DWTPs had a low concentration (<30 ng/L) of PPCPs. Only samples from a DWTP was observed to have higher concentration of ibuprofen (IBP) (55.6 ng/L), benzophenone (BZP) (111.9 ng/L), caffeine (CAF) (442.5 ng/L), and diethyltoluamide (DEET) (515.6 ng/L) in raw water than others. The results of laboratory-scale water treatment processes simulations indicated that the pre-chlorination process was the key step responsible for the removal of PPCPs in conventional water treatment processes, which can remove most of the hormone treatment products, parabens, oxybenzone (OXB), and acetaminophen (ACT) in water sources. Although sand filtration was not able to remove any of the PPCPs tested in this study; after addition of anthracite as part of the filter medium, the filtration process could remove some of the chosen PPCPs. This study further compared the efficacy of various oxidation treatments - chlorination, ultraviolet (UV), UV/Chlorine, and UV/H2O2 processes - in PPCP removals from water. The effects of reaction time, oxidant concentration, pH, and water matrix and the generation of disinfection by-products (DBPs) were assessed. The removal of PPCPs was observed to be a slightly improved when the concentration of oxidants was higher. In addition, pH affected the reactivity of chlorine with some of the investigated chemicals. Water matrix had a minor effect on the removal of PPCPs in the various treatment processes (mostly within 15%). UV could not effectively remove acetylsalicylic acid (ACS), IBP, BZP, OXB, CAF, DEET or most estrogens. When chlorine or hydrogen peroxide (H2O2) was used with UV, the efficiency of removal of all selected PPCPs was greatly improved (≥56.5% for UV/Chlorine and ≥27.6% for UV/H2O2). Although the PPCP removal efficiency of UV/Chlorine was higher than that of UV/H2O2, UV/H2O2 resulted in smaller amounts of DBP formation in the treated water. By contrast, UV/Chlorine resulted in higher concentrations of trihalomethanes (25%), haloacetonitriles (35%), and haloketones (115%). In this study, 12 PPCPs with higher concentrations or detection frequencies were selected for health risk assessment. Only DEET has an average Hazard Quotient (HQ) higher than 10-6, which was slightly higher than other PPCPs. When comparing the finished water samples by seasons into spring, summer and autumn, the HQ caused by most PPCPs is higher in summer. In addition, the health risks caused by PPCPs in tap water and bottled water samples from different regions were also compared. Most of PPCPs have higher HQ in tap water of households near Sin-Shan Water Treatment Plant. Among them, the HQ s of BZP, CAF and DEET are one order higher than that of households near Ping-Ding DWTP. Overall, none of the PPCPs had an HQ ≥ 1 in any of the water tested in this study. These low HQ values mean that the presences of those targeted chemicals in drinking water pose low health concern when considered individually. However, the mixture toxicities caused by PPCPs in drinking water may still cause hazard to the population. Future studies are recommended to develop technologies that can rapidly identify priority contaminants with the most harmful potential and to investigate the health risks caused by these chemical mixtures.

參考文獻


Abou-Donia M, Goldstein L, Dechovskaia A, Bullman S, Jones K, Herrick E, et al. 2001. Effects of daily dermal application of deet and permethrin, alone and in combination, on sensorimotor performance, blood-brain barrier, and blood-testis barrier in rats. Journal of Toxicology and Environmental Health Part A 62:523-541.
Abou-Donia MB. 1996. Neurotoxicity resulting from coexposure to pyridostigmine bromide, deet, and permethrin: Implications of gulf war chemical exposures. Journal of Toxicology and Environmental Health Part A 48:35-56.
Acero JL, Benitez FJ, Real FJ, Roldan G. 2010. Kinetics of aqueous chlorination of some pharmaceuticals and their elimination from water matrices. Water Research 44:4158-4170.
Acosta-Rangel A, Sánchez-Polo M, Polo A, Rivera-Utrilla J, Berber-Mendoza M. 2018. Sulfonamides degradation assisted by UV, UV/H2O2 and UV/K2S2O8: Efficiency, mechanism and byproducts cytotoxicity. Journal of Environmental Management 225:224-231.
Adams C, Wang Y, Loftin K, Meyer M. 2002. Removal of antibiotics from surface and distilled water in conventional water treatment processes. Journal of Environmental Engineering 128:253-260.

延伸閱讀