透過您的圖書館登入
IP:3.134.81.206
  • 學位論文

大行程精密定位平台整合及應用於雙光子聚合微製造

Integration and Application of a Long-Stroke Precision Positioning Stage to Micro Fabrication by Two-Photon Polymerization

指導教授 : 王富正

摘要


本論文建構一個大行程精密定位平台,使用x-y 二軸壓電平台以及z單軸壓電平台做為精密定位控制,並整合步進馬達平台以加長整個平台的行程,完成一個同時具有高精密以及長行程的定位平台。我們進一步將此定位平台應用於雙光子聚合(two-photon polymerization, TPP)技術製作微型結構,並提出量化指標調整增進控制器性能。 高精密定位具有廣泛的應用背景,例如¬¬:原子力顯微鏡(atomic force microscopy , AFM)、掃描式電子顯微鏡(scanning electron microscope, SEM)、精密製成及加工等。為了達到高精密度的需求,壓電材料最為廣泛採用,因為其具有響應快速、高出力、高解析度等特性,但是壓電平台本身具有遲滯現象及蠕變之非線性動態特性,使得控制不易,另外局限於操作電壓限制及壓電材料本身物理極限,壓電平台所能提供之行程有限。針對這些問題,吾人採用多次系統鑑別及線性化,取得壓電平台系統轉移函數,並將其非線性項視為系統的不確定性,利用強韌控制理論,確保控制器在操作環境下的穩定性。再者,針對壓電平台行程問題,吾人透過步進馬達之長行程特性,將其與壓電平台整合,以達到高精度且長行程的定位平台。在系統整合的部分,吾人採用雙迴圈(double-loop)控制,對於定位的判定需由行程限制方程式來對兩個平台做溝通,以避免壓電平台輸出至飽和死區。 我們進一步將所發展的定位平台,應用於雙光子聚合技術來製作微型結構,並透過感測器架構的實驗結論來驗證所製作材料的座標系。最後,吾人發展兩種量化成果的方法,其一將掃描式電子顯微鏡成果利用影像處理數據化,以代替肉眼檢視成果;其二則透過光學成像測試來檢驗所製作透鏡是否良好,再根據以上指標調整控制器,經由經驗法則及調整策略來改進微結構品質。

並列摘要


This thesis proposes a long-stroke precision positioning stage, which combines two piezoelectric stages and a stepper motor stage to achieve long-stroke and high-precision positioning. We further apply the combined stage to two-photon polymerization for micro-manufacturing, and propose two performance indices to adjust the designed controllers for further improvement. Precision positioning is becoming prevalent and widely used in many areas, such as atomic force microscopy (AFM), scanning electron microscope (SEM) and nano-manufacturing. Piezoelectric-transducer (PZT) materials are the most commonly used actuators in precision positioning due to their high-driven forces, fast responses and high resolution. However, nonlinearities of PZT, such as hysteresis and creep, might degrade system performance. Furthermore, the physical limits of piezoelectric materials might constraint the moving ranges of PZT. To solve these problems, we linearize our PZT model to obtain transfer functions and consider the nonlinearity of PZT as model uncertainties. We then apply robust loop-shaping technique to design controllers which can guarantee system stability and improve system performance. As for the problem of limited stroke, we combined the PZT stage with a stepper motor stage to enlarge the working rang of the system. We propose a double-loop control structure for system integration, and design an anti-locking function to prevent PZT from reaching saturation dead zones. We then apply the combined stage to two-photon polymerization for micro-manufacturing. We further verify the coordinate of fabricated structure by studying different control sensor layouts. Finally, we propose two performance indices: the first is image processing of the SEM results; The second is optical quality of images by the fabricated micro-lens. Based on these indices, we can adjust the designed controllers for further improvement by two-photon polymerization.

參考文獻


[2] Q. Xu. Digital sliding mode prediction control of piezoelectric micro/nanopositioning system. IEEE transactions on Control Systems Technology 2014; Vol. 23 Iss. 1, Pgs. 297–304.
[3] J. Y. Peng, X. B. Chen. Integrated PID-based sliding mode state estimation and control for piezoelectric actuators. IEEE/ASME transactions on Mechatronics 2012; Vol. 19 Iss. 1, Pgs. 88–99.
[4] B. J. Kenton, K. K. Leang. Design and control of a three-axis serial-kinematic high-bandwidth nanopositioner. IEEE/ASME transactions on Mechatronics 2011; Vol. 17 Iss. 2, Pgs. 356–369.
[5] J. Yi, S. Chang, Y. Shen. Disturbance-observer-based hysteresis compensation for piezoelectric actuators. IEEE/ASME transactions on Mechatronics 2009; Vol. 14 Iss. 4, Pgs. 456–464.
[6] L. Liu, K. K. Tan, C. S. Teo et al. Development of an approach toward comprehensive identification of hysteretic dynamics in piezoelectric actuators. IEEE transactions on Control Systems Technology 2012; Vol. 21 Iss. 5, Pgs. 1834–1845.

延伸閱讀