透過您的圖書館登入
IP:3.133.79.70
  • 學位論文

大範圍雙光子聚合技術應用於曲面上微結構製造

Large area fabrication of microstructures on curvilinear surfaces by two-photon polymerization technology

指導教授 : 鍾添東

摘要


本文研究雙光子聚合技術應用於大範圍曲面上微結構製造,本研究中所使用的雙光子聚合製造系統整合了飛秒雷射、掃描振鏡、壓電平台、傾斜校正平台、平面移動平台、分光鏡、CMOS相機、10倍放大倍率物鏡與繞射分光元件,利用上述雙光子聚合製造系統,可以成功製作出基於Cassie-Baxter模型設計之不同尺寸與幾何形狀的疏水結構,此外,有賴於高功率雷射、平面移動平台及繞射分光元件的幫助,製作時間能縮短能有更大的製作範圍,目前製作出面積5mm x 5mm之疏水結構,製作時間為42分鐘。完成製作後,也利用10µL之水滴進行疏水測試,以證明此微結構能使玻片表面疏水。另一方面,在加裝了分光鏡、CMOS相機與平面移動平台後,此雙光子聚合製造系統具有定位及觀測功能,有了這樣的功能,我們能在曲面上進行定位,以設定加工之座標系進行製造,而後成功在曲面上製作了微線路,其投影面積為2mm x 2mm,線寬為13µm。

並列摘要


This thesis studies on fabricating large scale hydrophobic microstructures and micro wires on curvilinear surfaces by two-photon polymerization (TPP) technology. The TPP fabrication system used in this thesis integrates femtosecond laser, galvanometer scanner, piezo translation stage, tilting correction stage, planar translation stage, beam splitter, CMOS camera, 10x objective lens with numerical aperture 0.25 and diffractive optical elements. Based on the TPP fabrication system, different dimensions and geometric shapes for hydrophobic microstructures designed according to Cassie-Baxter model were successfully fabricated. Furthermore, by using high power laser, micron resolution planar translation stage and diffractive optical elements (5x5 spots), the fabrication time can be greatly reduced with improved fabrication scale. Therefore, the large scale hydrophobic microstructures can be manufactured with 5mm x 5mm cover area and fabrication time 42 minutes. Then, the contact angle test with 10µL water droplet was applied to prove that the microstructures can make the surface of cover glass hydrophobic. On the other hand, with the beam splitter, CMOS camera and planar translation stage, we can make the TPP fabrication system have the ability of observation and positioning. By this feature, we can locate certain point on curvilinear surface to define the coordinate system then fabricate microstructures on it. After that, micro wire on curvilinear surface can be successfully fabricated with 2mm x 2mm projection area and 13µm wire width.

參考文獻


[1] Ostendorf, A., & Chichkov, B. N. (2006). Two-photon polymerization: a new approach to micromachining. Photonics spectra, 40(10), 72.
[2] Baldeck, P. L., Prabhakaran, P., Liu, C. Y., Bouriau, M., Gredy, L., Stephan, O., ... & Lin, C. L. (2013, September). Recent advances in two-photon 3D laser lithography with self-Q-switched Nd: YAG microchip lasers. In Optical Processes in Organic Materials and Nanostructures II (Vol. 8827, p. 88270E). International Society for Optics and Photonics.
[3] Burmeister, F., Steenhusen, S., Houbertz, R., Asche, T. S., Nickel, J., Nolte, S., ... & Fessel, S. (2015). Two-photon polymerization of inorganic-organic polymers for biomedical and microoptical applications. Optically induced nanostructures: Biomedical and technical applications, 239-266.
[4] Liu, Y. J., Yang, J. Y., Nie, Y. M., Lu, C. H., Huang, E. D., Shin, C. S., ... & Lin, C. L. (2015). A simple and direct reading flow meter fabricated by two-photon polymerization for microfluidic channel. Microfluidics and Nanofluidics, 18(3), 427-431.
[5] Kawata, S., Sun, H. B., Tanaka, T., & Takada, K. (2001). Finer features for functional microdevices. Nature, 412(6848), 697.

延伸閱讀