透過您的圖書館登入
IP:18.190.159.10
  • 學位論文

離子高分子金屬複合材料在可調變光衰減器的應用

Application of Ionic Polymer Metallic Composite in Variable Optical Attenuator

指導教授 : 蘇國棟

摘要


IPMC所指的是一種離子高分子金屬複合材料,它可以被電壓所致動,隨著電壓的增加使其形狀逐漸彎曲。我們將使用離子高分子金屬複合材料在自由空間中來做為可調變光衰減器的角色。我們將量測離子高分子金屬複合材料的元件插入損耗、光衰減範圍、偏振相關損耗、波長相關損耗以及反應時間。我們發現離子高分子金屬複合材料在2伏特的驅動電壓以下提供明顯的致動效果。我們所使用的高分子金屬複合材料元件表面粗糙度為0.66 μm,元件插入損耗為2.89 dB。此高分子金屬複合材料的光衰減範圍可高達80 dB,其解析度為每伏特40 dB。元件的偏振相關損耗範圍為0.1 dB到0.6 dB。元件在1527 nm到1563 nm光波段的波長相關損耗範圍為0.15 dB到0.85 dB。元件的反應時間和鬆弛時間分別為0.5秒和0.3秒。元件的致動電壓為2伏特,而元件的功率損耗為5.78 mW。

並列摘要


Ionic-polymer-metallic composite (IPMC) can be actuated by low voltage and be bended gradually with increasing driving voltage. We used IPMC as a variable optical attenuator (VOA) in free space configuration. We measured the insertion loss, optical attenuation range, polarization dependent loss (PDL), wavelength dependent loss (WDL), and response time. We concluded that our IPMC can be actuated by less than two volts. The surface roughness of our IPMC was about 0.66 μm and the insertion loss was 2.89 dB, and optical attenuation range of our device is as great as 80 dB with 40 dB/volt resolution. The range of PDL is about from 0.1 dB to 0.6 dB. The wavelength dependent loss is from 0.15 dB to 0.85 dB in the wavelength range from 1527 nm to 1563 nm. Response time and relaxation time of the device are about 0.5 second and 0.3 second. The actuation voltage was 2 volts and the power consumption was 5.78 mW.

參考文獻


[2]K. Isamoto, K. Kato, A. Morosawa, C. Chong, H. Fujita, and H. Toshiyoshi, “A 5-V operated MEMS variable optical attenuator by SOI bulk micromachining,” IEEE Journal on Selected Topics in Quantum Electronics, 10(3): pp. 570-578,
[3]V. Aksyuk, B. Barber, C. R. Giles, R. Ruel, L. Stulz, and D. Bishop, “Low insertion loss package and fiber connectorised MEMS reflective optical switch,” Electron. Lett., vol. 34, no. 14, pp. 1413–1414, 1998.
[5]S. Yun, Y. Kim, H. Kown, W. Kim, J. Lee, Y. Lee, and S. Jung, “Optical characteristics of a micromachined VOA using successive partial transmission in a silicon optical leaker,” IEEE/LEOS Int. Conf. Optical MEMS, pp. 51–52, 2002.
[6]C. Kim, N. Park, and Y. Kim, “MEMS reflective type variable optical attenuator using off-axis misalignment,” IEEE/LEOS Int. Conf. Optical MEMS, pp. 55–56, 2002.
[7]C. Marxer, B. de Jong, and N. de Rooij, “Comparison of MEMS variable optical attenuator designs,” IEEE/LEOS Int. Conf. Optical MEMS, pp. 189–190, 2002.

延伸閱讀