透過您的圖書館登入
IP:13.58.201.235
  • 學位論文

利用電漿光譜技術之手機式氣體感測器之建立

Development of Smartphone-Based Gas Sensor Using Plasma Emission Spectroscopy

指導教授 : 徐振哲

摘要


本實驗為利用一低成本可撓式常壓微電漿裝置(Microplasma Generation Device, MGD)進行氣體檢測之實驗研究,該微電漿裝置主要由雙層銅箔與玻璃纖維介電質組成,並以碳粉轉印技術與濕蝕刻進行電極方面的設計,相較傳統電漿裝置之製程方法具有低成本,電極設計具有彈性,且可大量製作之優點。此外本實驗藉由浮動電極之設計,增強電漿放光強度,並探討不同浮動電極參數之改變對於電漿特性之影響。 本實驗氣體檢測方法為利用待測氣體與電漿反應產生電漿放光後,利用光譜儀分光產生電漿光譜,由於不同氣體會有不同特徵光,藉此進行氣體定量與定性上之分析。而實驗主要分成兩部分,第一部分為在氬氣氣氛中進行有機物氣體的檢測:利用在浮動電極設計最適化後之微電漿裝置(MGD) 進行有機物之分析,定性上可以分辨有機物中是否含有氮之元素;定量上可分析具有定量潛力且極限濃度約略在25 ppm之乙醇。第二部分為完全可攜式氣體檢測裝置:本實驗將電漿電源供應器、微電漿裝置(MGD),以及光譜儀整體裝置微型化,並且利用手機作為分析平台,欲展示一具有完全可攜式潛力之氣體檢測裝置。本部分實驗中吾人探討可攜式電漿電源供應器設計和電漿電源供應器與微電漿裝置電容匹配之效應,最後使用此裝置展示常見氣體與易揮發性有機氣體之定性分析,並展示定量有機物(丙酮)之潛力。

並列摘要


A low-cost and flexible atmospheric-pressure microplasma generation device (MGD), which is used to detect gas, is presented. This MGD is made of double-side copper clad laminate (CCL) and dielectric fiberglass; the MGD electrode patterns are defined using the toner-transfer method and wet etching. Comparing to traditional manufacture of plasma device, this work demonstrates a less-cost, more customized method for electrode patterning and the capability of mass production. Furthermore, using this MGD with a specially-designed electrode arrangement (floating electrode), the optical intensity of plasma is enhanced. We also discuss the influence of different parameters of floating electrode on plasma properties. When plasma reacts with the analyte, the vapor is excited and emits light. Then, we obtain plasma optical emission from spectrometer. Each molecule emits the light with its specific wavelength; therefore, we can utilize this unique information to qualify and/or quantify contamination in the sample. There are two parts in this thesis. In the first part, we use optimal parameters of floationg electrode of MGD to analyze organic compounds by plasma emission spectroscopy in Argon. This system can identify organic compounds with CN (388 nm) bond and detect ethanol with detection limit at 25 ppm. A nearly linear calibration curve can be obtained for ethanol. The second part of this study is focused on developing a real portable gas sensor. We miniaturize the whole system, including the power supply, plasma device and spectrometer. Moreover, we use the smartphone as a platform for analysis. In this part, there is a discussion of matching between portable power supply and MGD. Finally, we identify normal gas and organic gas and the possibility of quantitative analysis.

參考文獻


1. Radmilovic-Radjenovic, M.; Lee, J. K.; Iza, F.; Park, G. Y., Particle-in-cell simulation of gas breakdown in microgaps. J. Phys. D-Appl. Phys. 2005, 38, 950-954.
2. Fridman, A.; Chirokov, A.; Gutsol, A., Non-thermal atmospheric pressure discharges. J. Phys. D-Appl. Phys. 2005, 38, R1-R24.
3. Heeren, T.; Ueno, T.; Wang, D.; Namihira, T.; Katsuki, S.; Akiyama, H., Novel dual Marx generator for microplasma applications. IEEE Trans. Plasma Sci. 2005, 33, 1205-1209.
4. Schoenbach, K. H.; ElHabachi, A.; Shi, W. H.; Ciocca, M., High-pressure hollow cathode discharges. Plasma Sources Sci. Technol. 1997, 6, 468-477.
5. Raja, L. L.; Varghese, P. L.; Wilson, D. E., Modeling of the electrogun metal vapor plasma discharge. Journal of Thermophysics and Heat Transfer 1997, 11, 353-360.

延伸閱讀