透過您的圖書館登入
IP:3.144.36.141
  • 學位論文

結合低成本微電漿產生裝置與智慧型手機光譜儀之 氣體感測器之建立

Development of Gas Sensing Device that Integrates Smartphone-Based Spectrometer and Low-Cost Microplasma Generation Device

指導教授 : 徐振哲

摘要


本實驗為利用微電漿與環境氣氛作用放出特徵光之特性,利用智慧型手機光譜儀取得氣氛電漿光譜進而偵測環境氣氛之實驗研究。透過低成本可撓式微電漿產生裝置與智慧型手機光譜儀之結合,成為一可攜式之氣體檢測器,其中智慧型手機光譜儀包括狹縫、光柵,並利用智慧型手機之相機進行光譜的取得,而光譜儀主要結構是使用3D列印機印製成一5.0 × 2.0 × 7.8 立方公分之立方體,但由於手機相機之限制,此裝置僅能進行波長為400-700 nm之光譜分析。更進一步討論智慧型手機光譜儀的設計如何影響其靈敏度以及光譜解析度,實驗所使用的智慧型手機光譜儀其光譜半高寬遠低於10nm,與市售光譜儀相當。 本實驗使用的微電漿產生裝置以介電層放電(dielectric barrier discharge, DBD)型式之常壓微電漿系統進行實驗,其主要是由銅箔基板透過碳粉轉印技術(toner transfer process)以及濕式蝕刻製成,具有低成本、簡單製作且可客製化之優點。並與上述裝置結合,透過Matlab有效地將手機圖像轉換為有用的光譜。此裝置不僅可分辨環境背景氣氛,且可在揮發性有機物之氣氛下觀察其最主要之發射光譜帶:CH (431 nm, A2Δ–X2Π)、C2 (469 nm, d3Πg–a3Πa)與C2 (516 nm, 563 nm and 605 nm, A3Πg– X’3Πu),亦透過智慧型手機相機錄影模式以及市售光譜儀探討電漿之穩定性與定量之可能性。

並列摘要


This work presented the development of a smartphone-based spectrometer for acquisition of plasma optical emission to detect the ambient atmosphere. Through a combination of a low-cost microplasma generation device and a smartphone-based spectrometer, a portable gas detector will be designed. The smartphone-based spectrometer contains a slit, a grating, and utilizes the camera of a cellphone for spectra acquisition. The main structure of this device, a 5.0×2×7.8 cm3 cuboid, is constructed using a 3D-printer. Due to the limitation of the smartphone camera, this smartphone-based spectrometer is able to perform spectral analysis with the wavelengths from 400 to 700 nm. The full width at half maximum of this smartphone-based spectrometer is well below 10 nm, which is comparable with commercial spectrometers. The microplasma generation device used in this work is a type of dielectric barrier discharge. It is mainly made of a copper clad laminate through a toner transfer process and wet etching, and has the advantages of low cost, simple fabrication, and customization. Combining with the above device, the spectral image from smartphone can be efficiently converted into a useful spectrum by Matlab. This device not only distinguishes the background ambient, but also observes its most important emission bands in the atmosphere of volatile organic compounds: CH (431 nm, A2Δ–X2Π), C2 (469 nm, d3Πg–a3Πa) and C2 (516 nm, 563 nm and 605 nm, A3Πg–X'3Πu). The possibility of stability and quantification of plasma is also explored through smartphone camera recording mode and commercial spectrometers.

參考文獻


1. D. Gates, "Plasma: An International Open Access Journal for All of Plasma Science," Plasma, 1 (1), 4 (2018).
2. I. Langmuir, "Oscillations in Ionized Gases," Proceedings of the National Academy of Sciences, 14 (8), 627-637 (1928).
3. N. S. J. Braithwaite, "Introduction to gas discharges," Plasma Sources Sci. Technol., 9 (4), 517-527 (2000).
4. M. Radmilovic-Radjenovic, J. K. Lee, F. Iza, and G. Y. Park, "Particle-in-cell simulation of gas breakdown in microgaps," J. Phys. D-Appl. Phys., 38 (6), 950-954 (2005).
5. D. Pappas, "Status and potential of atmospheric plasma processing of materials," J. Vac. Sci. Technol. A, 29 (2), 17 (2011).

延伸閱讀