透過您的圖書館登入
IP:3.149.255.162
  • 學位論文

應用於5G毫米波通訊系統採用線性器與自動調整偏壓技術及中和技術以優化線性度及效率之CMOS功率放大器

5G Millimeter Wave CMOS Power Amplifiers with Enhanced Linearity Efficiency by Linearizer, Adaptive Bias Neutralization

指導教授 : 盧信嘉
本文將於2025/08/12開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


本篇論文提出了兩個使用台積電90-nm互補式金氧半導體製程於Ka頻段之功率放大器,設計目標是提升電路的線性度、輸出功率、功率附加效率及退縮6-dB處功率附加效率。 於第一個電路中,主要採用了雙重中和技術,功率放大器是使用2.4 V偏壓供電。此差動疊接架構是由四個單級疊接架構與變壓器組合而成,功率放大器在2.4 V以及偏壓0.7 V的情況下,實際量測可得Ka頻段操作小訊號增益14 dB、OP1dB為19.56 dBm以及飽和輸出功率20.24 dBm,於OP1dB點的PAE與PAE的最大值分別為21.45 %與21.9 %,而在P1dB退縮6 dB點的PAE為10.14 %。 第二個電路,主要是以第一顆架構為基礎,並加入線性器及自動調整偏壓等技術來達到提升功率附加效率。此功率放大器在2.4 V以及偏壓0.8 V的情況下,實際量測可得Ka頻段操作小訊號增益14.68 dB、OP1dB為20.15 dBm以及飽和輸出功率20.71 dBm,於OP1dB點的PAE與PAE的最大值分別為25.77 %與25.99%,而在P1dB退縮6 dB點的PAE為15.73 %。與第一顆晶片相比,在相近增益及OP1dB之下,對應之PAE都有明顯的改善。

並列摘要


In this thesis, two Ka-band power amplifier chips implemented in TSMC 90-nm CMOS process are proposed to improve the linearity, output power, PAE and back-off 6-dB efficiency. For the first chip, a Ka-band power amplifier using 2.4 V supply voltage utilizing double neutralization technique is designed and measured. The differential cascode architecture combines four single-stage cascode cells and transformers. With 2.4 V supply voltage and 0.7 V bias voltage, the measured small signal gain is 14 dB, OP1dB is 19.56 dBm, and saturation power is 20.24 dBm. The PAE at OP1dB and peak are 21.45 % and 21.9% respectively. The PAE at 6-dB back-off from P1dB is 10.14 %. The second chip is based on the first one by adding linearizer and adaptive-bias to improve back-off power-added-efficiency. With 2.4 V supply voltage and 0.8 V bias voltage, the measured small signal gain is 14.68 dB, OP1dB is 20.15 dBm, and saturation power is 20.71 dBm. The PAE at OP1dB and peak are 25.77 % and 25.99 % respectively. The PAE at 6-dB back-off from P1dB is 15.73 %. Compared with the first chip, the second chip has similar gain and OP1dB, but PAE at different power levels are all improved.

參考文獻


[1] Jri Lee, Yi-An Li, Meng-Hsiung Hung, and Shih-Jou Huang, “A fully-integrated 77-GHz FMCW radar transceiver in 65-nm CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 45, no. 12, pp. 2746 - 2756, Dec. 2010.
[2] E. Björnson. (2019). Beamforming from distributed arrays. [Online]. Available: https://ma-mimo.ellintech.se/2019/01/25/beamforming-from-distributed-arrays/
[3] D. M. Pozar, 4th, Ed. Microwave Engineering. John Wiley Sons, 2011.
[4] N. Instruments. (2019). Millimeter wave: band battle. [Online]. Available: https://www.ni.com/zh-tw/innovations/white-papers/16/mmwave--the-battle-of-the-bands.html
[5] (2020). Taiwan IOT Technology and Industry Association. [Online]. Available: http://www.twiota.org/eventDetails.aspx?id=23dd87b2-5c1a-4c6f-97fb-ba73d6d1844b

延伸閱讀