透過您的圖書館登入
IP:18.224.31.50
  • 學位論文

藉由控制器間之動態受力點變化以提供力回饋於虛擬實境

ElastiLinks: Force Feedback between VR Controllers with Dynamic Points of Application of Force

指導教授 : 陳炳宇

摘要


在虛擬實境中提供力回饋是很普遍來增加使用者沈浸感的方法,但最近的研究都是專注在提供不同類型的力或是透過力的組合來達到不一樣的力回饋,卻沒有探討到一個合適的受力點是如何影響使用者的體驗,而這裡的受力點的意思是指合力所作用的那一點,例如:使用者在虛擬實境中拉弓箭時,不會感受到力矩,但在拉彈弓的時候除了正向力外,也會感受到力矩。因此,我們提出一個手持式的裝置來提供控制器之間的力回饋,並且可以動態改變裝置的受力點位置,每個控制器上的可轉動軌道讓裝置可以動態改變受力點位置,而兩條連結機構分別產生了阻力跟衝擊力的兩種常見力回饋。為了了解使用者對於控制器間力量分級的分辨度,我們分別對阻力和衝擊都做了力量感知實驗,根據上述實驗結果,我們再設計一個感知實驗探討受力點多少的旋轉差異與移動差異會讓使用者察覺,最後我們進行了體驗虛擬實境的實驗來驗證動態改變受力點的力回饋可以增進使用者在虛擬實境的體驗。

並列摘要


Force feedback is commonly used to enhance realism in virtual reality(VR). However, current works mainly focus on providing different forcetypes or patterns, but do not investigate how a proper point of applicationof force (PAF), which means where the resultant force is applied to, affectsusers’ experience. For example, users perceive resistive force without torquewhen pulling a virtual bow, but with torque when pulling a virtual slingshot.Therefore, we propose a set of handheld controllers, ElastiLinks, to provideforce feedback between controllers with dynamic PAFs. A rotatable trackon each controller provides a dynamic PAF, and two common types of forcefeedback, resistive force and impact, are produced by two links, respectively. We performed a force perception study to ascertain users’ resistive and impact force level distinguishability between controllers. Based on the results, we conducted another perception study to understand users’ distinguishability of PAF offset and rotation differences. Finally, we performed a VR experience study to prove that force feedback with dynamic PAFs enhances VR experience.

參考文獻


[1] H.-Y. Chang, W.-J. Tseng, C.-E. Tsai, H.-Y. Chen, R. L. Peiris, and L. Chan. Facepush: Introducing normal force on face with head-mounted displays. In The 31st Annual ACM Symposium on User Interface Software and Technology, pages 927–935. ACM, 2018.
[2] I. Choi, E. Ofek, H. Benko, M. Sinclair, and C. Holz. Claw: A multifunctional handheld haptic controller for grasping, touching, and triggering in virtual reality. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pages 1–13, 2018.
[3] C. Fang, Y. Zhang, M. Dworman, and C. Harrison. Wireality: Enabling complex tangible geometries in virtual reality with worn multi-string haptics. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pages 1–10, 2020.
[4] A. Gupta, A. A. R. Irudayaraj, and R. Balakrishnan. Hapticclench: Investigating squeeze sensations using memory alloys. In Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology, pages 109–117. ACM, 2017.
[5] S. Heo, C. Chung, G. Lee, and D. Wigdor. Thor’s hammer: An ungrounded force feed- back device utilizing propeller-induced propulsive force. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pages 1–11, 2018.

延伸閱讀