透過您的圖書館登入
IP:18.118.30.253
  • 學位論文

利用超臨界溶液快速膨脹法進行藥物Monobenzone、Ethylparaben、Edaravone與Kojic acid之微粒化研究

Study of the RESS Process for Micronization of Monobenzone, Ethylparaben, Edaravone and Kojic acid

指導教授 : 陳延平
本文將於2025/07/13開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


本研究利用超臨界溶液快速膨脹法對四種藥物進行微粒化並探討其性質,分別為脫色劑莫諾苯宗 (Monobenzone)、抑菌劑尼泊金乙酯 (Ethylparaben)、腦梗死治療注射劑依達拉奉 (Edaravone) 與黑色素專屬抑制劑麴酸 (Kojic acid) 四種原料藥進行微粒化,目的在藉由縮小藥物顆粒尺寸以及控制結晶特性,增加其溶離速率來改善藥物在生物體上的用途,最終提升藥物在生物體中的的相容性以及藥物相關應用的實用性。這四種藥物之原始顆粒皆相當大,本研究將利用超臨界溶液快速膨脹法進行藥物微粒化,以縮小顆粒尺寸以及控制結晶型態,來達到上述的目的。 在本研究中,利用超臨界二氧化碳作為萃取溶劑,利用操作不同的實驗參數,有如萃取溫度 (Text)、萃取壓力 (Pext)、藥物收集瓶溫度 (Tpost) 以及噴嘴內徑 (DN) 等參數,分析微粒化後的結果,探討不同實驗參數對藥物顆粒形成的效應,在了解各種參數之影響程度後,可得知如何達到最佳化操作條件,進而提升微粒化效果。本研究後段將進行溶離速率實驗,參考藥物的實際應用後,選擇適當的溶離媒介,並觀察經過超臨界溶液快速膨脹法進行微粒化後的藥物,其溶離速率是否有提升。 首先在藥物Monobenzone的研究中,原始藥物經過微粒化程序後,藥物粒徑由264.69 μm縮小為0.64 μm。在定性分析方面,由FTIR、DSC與XRD等儀器觀察到藥物經由微粒化處理後,藥物雖無變質現象發生,卻可從XRD圖譜看到有晶型轉變。接著比較藥物處理前後之溶離速率差異,發現RESS處理過後藥物之溶離速率略快於原始藥物,代入Weibull model進行迴歸後,處理後藥物之溶離速率係數kw為0.002525 min-1,而原始藥物物之溶離速率係數kw為0.001807 min-1,溶離速率約略提升1.3973倍,溶離速率略微提升,造成兩者差異不大的原因可能為投入藥物時,經過RESS處理後的粉體會因重量過輕而浮在溶離媒介液面上,沒有直接接觸水溶液,進而影響藥物的溶離速率表現。 接著在第二支藥物Ethylparaben的研究中,原始藥物之平均粒徑為933.35 μm,進行微粒化處理後粒徑可縮小至0.64 μm。定性方面,經由FTIR、DSC與XRD分析後,藥物無變質現象,晶型也未改變,但在RESS處理過後,結晶強度大幅下降。而在溶離速率實驗中,發現進行微粒化後的藥物在溶離速率上有大幅的提升,在經過Weibull model迴歸後,計算出原始藥物之溶離速率係數kw為0.023746 min-1,微粒化後藥物之 kw為0.439319 min-1,由結果可得知藥物在進行微粒化後溶離速率提升了18.5007倍之多,說明了再經過微粒化程序後,可以大幅改善Ethylparaben這種常用於親水性化妝品的抑菌劑於水中的溶解速率。 而在最後兩支藥物Edaravone以及Kojic acid的研究中,原始藥物顆粒大小分別為36.74 μm與232.40 μm,再經過超臨界快速膨脹法微粒化後,顆粒縮小為1.67 μm與0.31 μm。先看到藥物Edaravone,顆粒縮小了約22倍,定性方面,經FTIR、DSC與XRD分析後,藥物無變質現象、熔點轉移以及晶型改變發生,從SEM圖可發現微粒化後的藥物為較均勻之針狀晶體,;接著看到Kojic acid,藥物顆粒縮小了749.7倍,定性分析方面從圖譜也可看出藥物在RESS處理後並無變質、熔點轉移發生,晶型也未發生改變,並可從XRD圖譜發現兩隻藥物在微粒化後結晶強度都明顯降低許多。 另外,本實驗也成功地利用RESSAS程序,將此研究中的第一支藥物Monobenzone經由噴入水溶液的環境中,製備成穩定的微粒懸浮液,並經由靜態雷射散射儀計算其粒徑大小,發現微粒化後之平均粒徑可再縮小至0.11 μm,相較於傳統的RESS程序,粒徑大小可再縮小約5.81倍。

並列摘要


In this study, RESS process was applied for micronization and recrystallization of four active pharmaceutical ingredients (APIs) including monobenzone, ethylparaben, edaravone and kojic acid. After RESS processed, the submicron particles were precipitated in the expansion vessel with various effects of operation parameters like extraction temperature (Text), extraction pressure (Pext), post temperature (Tpost) and the nozzle diameter (DN). And then they were evaluated by SEM, FTIR, DSC, XRD and TGA analysis. In addition, the dissolution profile of RESS-processed particles will be compared to the originals. For monobenzone, the particle size was significantly reduced from 264.69 μm to 0.64 μm by RESS process. We found that there was polymorph transformation occurred of the micronized particles and the decrease of crystallinity after the process. With the Weibull model, the dissolution rate constant (kw) of original and RESS-processed particles were 0.001807 min-1 and 0.002525 min-1, respectively. It showed that the RESS-processed monobenzone had a slight improve on dissolution behavior than the originals. Same results were discovered on the compound ethylparaben through RESS process, the particles were greatly micronized from 933.35 μm to 0.64 μm. In addition to the decrease of the crystalliniy, compound’s polymorph transformation was not change after the RESS process, either. Dissolution studies showed that the dissolution rate constant (kw) promoted from 0.023746 min-1 to 0.439319 min-1 after processed, which meant the dissolution rate of RESS-processed particles was enhanced by 18.5 times with new dissolution profile. For the last two drugs edaravone and kojic acid. Without any metamorphism after RESS processed, they were successfully micronized from their original sizes 36.74 μm and 232.40 μm to around 1.67 μm and 0.31 μm. Through several effects and conditions above, post temperature and nozzle diameter were the two most significant effects on the mean particle size, size distribution and morphology in this study. At last, We also used RESSAS process to form the monobenzone particles in aqueous suspension, the mean particle size was further reduced to 0.11 μm and was 5.8 times smaller than the RESS-processed.

並列關鍵字

RESS RESSAS micronzation dissolution rate monobenzone ethylparaben edaravone kojicacid

參考文獻


陳淑鈺,利用超臨界二氧化碳進行奈米二氧化矽表面接枝之研究,國立台灣大學化學工程學研究所碩士論文 (2008)
張瓊云,利用超臨界反溶劑法進行異抗壞血酸、沒食子酸丙酯及薑黃素微粒化,國立台灣大學化學工程學研究所碩士論文 (2010)
Akbari Z., Amanlou M., Characterization of Carbamazepine-Loaded Solid Lipid Nanoparticles Prepared by Rapid Expansion of Supercritical Solution, Tropical Journal of Pharmaceutical Research, 2014, 1955-1961
Alessi P., Cortesi P., Particle Production of Steroid Drugs Using Supercritical Fluid Processing, Industrial & Engineering Chemistry Research, 1996, 4718-4726.
Antonio B. S. Rosa, Sofia M., Solubility of all-trans retinoic acid in supercritical carbon dioxide, The Journal of Supercritical Fluids, 2015, 70-80

被引用紀錄


吳俊霖(2017)。利用超臨界溶液快速膨脹法進行藥物鄰乙氧基苯甲醯胺、甲亢平與甲萘醌之微粒化研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201701635
簡豪志(2016)。利用超臨界溶液快速膨脹法進行藥物氯貝酸與百里酚之微粒化研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201600496

延伸閱讀