透過您的圖書館登入
IP:3.23.101.60
  • 學位論文

研發可同時檢測多屬植物病毒之診斷鑑定晶片以及建立快速檢測Potyvirus屬病毒之流式微珠陣列系統

Development of Identification Chip for Simultaneous Detection of Multi-genera Plant Viruses and a Microsphere Suspension Array System for Rapid Detection of potyviruses

指導教授 : 張雅君

摘要


茄科植物涵蓋多種重要經濟作物,據文獻記載全世界能感染茄科作物的病毒超過29屬95種,而台灣也將近有13種以上之病毒可感染茄科作物。由於田間的茄科作物常有複合感染的情形,而高靈敏度之生物晶片(microarray)具有強大的平行檢測(parallel testing)能力,可在單一實驗中同時檢測多種目標病毒,因此被我們選擇作為診斷與鑑定茄科重要病毒的平台。在台灣危害茄科作物的RNA病毒以Tobamovirus、Potyvirus和Cucumovirus三屬為主,因此我們以這三屬病毒為檢測對象,同時將台灣尚未有報告之檢疫病毒Tombusvirus屬病毒納入晶片中,設計出以平面系統為基礎的多屬植物病毒鑑定晶片。針對這四屬病毒與植物actin mRNA,先分別設計各自的廣效性引子對,並在廣效性引子對之間選取序列差異性最高之區域,設計各種病毒的專一性寡核苷酸探針。而後將廠商合成的探針點漬於尼龍膜上,以UV光照射固定後備用。目前晶片所涵蓋的病毒探針種類已達四屬十八種。接著利用四屬病毒以及植物actin之cDNA株,依等莫耳數混合後作為模板,藉由multiplex PCR反應測試五組廣效性引子對以不同比例混合時之擴增效果,藉此調整各廣效性引子對之比例,以建立multiplex PCR最佳的擴增條件。標的物之製備方式為以植物全RNA為材料,利用五組廣效性引子對進行multiplex RT-PCR,並在擴增過程中以DIG標定,得到DIG標定之產物作為標的物,再與晶片進行逆墨點雜合反應,即可由雜合訊號判讀病毒檢測結果。經由我們調整後的實驗條件進行反應,multiplex RT-PCR與多屬植物病毒鑑定晶片之檢測靈敏度分別為100 pg與1 pg之Tomato bushy stunt virus RNA轉錄體。實驗結果顯示多屬植物病毒鑑定晶片可正確地檢測出此四屬病毒單獨或複合感染的茄科植物與種子樣品。為了解多屬植物病毒鑑定晶片之最適保存條件,將所製備的晶片分別乾燥保存於不同溫度條件下,每個月定時取出進行雜合反應測試,結果顯示此晶片可保存一年仍具有檢測功能,並且其最適存放環境為-20oC冰櫃。生物晶片依其基質的變化可分為平面系統(planar array)以及非平面系統(nonplanar array)兩種形式,而非平面系統之流式微珠陣列相較於傳統平面系統具有更便利快速之優勢,而流式微珠陣列系統中以target-specific primer extension (TSPE)方法較為彈性而簡單。因此我們以流式微珠陣列系統之TSPE方法為基礎,研發可同時快速檢測感染重要茄科作物的六種potyviruses之檢測平台,並以單獨或複合感染之potyvirus植物樣品進行測試,結果顯示出流式微珠陣列之TSPE系統可正確地檢測出健康植物以及五種potyvirus單獨感染之植物樣品,亦可準確地檢測出potyvirus複合感染之樣品。

並列摘要


Solanaceous plants contain a lot of important crops such as tobacco, tomato, potato, pepper and etc. In terms of the literatures, there are over 29 genera 95 species of plant viruses that can infect solanaceous crops in the world, and at least 13 virus species have been reported in Taiwan. The sensitive microarray techniques offer a great capability for parallel testing, and can be used to detect individual or multiple viruses in a single experiment. For this reason, we chose this method to detect and identify the important solanaceous plants-infecting RNA viruses. In Taiwan, RNA viruses frequently found in solanaceous crops include cucumoviruses, potyviruses and tobamoviruses. Therefore, we chose these three viral genera and the quarantined tombusviruses as the detection targets, and attempted to develop a multi-genera virus chip based on the plannar format. We separately designed degenerate primer pairs for each virus genus and the plant actin mRNA. Then we designed the oligonucleotide probes that allow identification of each virus to the species level from the region between the degenerate primer pairs. Finally, the probes were spotted onto a nylon membrane and immobilized by UV light. At present, one actin probe and 18 virus probes for four genera of plant viruses were designed. We used the equal molar mixture of the cDNA clones from four viral genera and the plant actin as the templates, and then optimized the concentration ratio of five degenerate primer pairs to overcome the difficulty of multiplex PCR. DIG-labeled targets were prepared from total RNA of the virus-infected plants by means of multiplex RT-PCR with five pairs of degenerate primers and dot-blot hybridization with the probes on the membrane. The detection sensitivities of multiplex RT-PCR and chip hybridization were 100 pg and 1 pg of RNA transcripts of Tomato bushy stunt virus, respectively. The results indicated that multi-genera virus chip could identify tombusvirus, cucumovirus, potyvirus and tobamovirus in single or mixed infection plant and seed samples correctly. In order to realize the most suitable storage condition for the chip, we tried to preserve the chip in different temperature condition, and took out the chip to hybridize with target once a month. The results showed that our chip could be kept for one year and still retained its detection ability, and its best storage condition was at -20oC. The non-plannar format of microsphere suspension array has been developed recently that might be high throughput and increased the speed of detection experiment. The target-specific primer extension (TSPE) of the system is suitable for microorganism detection. Therefore, we tried to develop a microsphere suspension array system that combines TSPE and microsphere hybridization for detection of solanaceous plant-infecting potyviruses. This TSPE of microsphere suspension array system could correctly identify five potyviruses in single or mixed infection samples.

參考文獻


何宇倫. 2007. 茄科重要病毒鑑定晶片之研發與應用. 國立台灣大學植物病理與微生物學研究所碩士論文.
陳紹崇、鄭安秀. 2004. 植物種苗驗證制度與植物病害防治. 台南區農業專訊第47期. 17-19頁.
葉慈容. 2004. 利用逆墨點雜合法鑑定九種馬鈴薯Y屬病毒. 國立台灣大學植物病理與微生物學研究所碩士論文.
李青芸. 2005. 菸草微綠嵌紋病毒引起之辣椒新病害及其感染性選殖株之建構. 國立台灣大學植物病理與微生物學研究所碩士論文.
Agindotan, B. and Perry, K.L. 2007. Macroarray detection of plant RNA viruses using randomly primed and amplified complementary DNAs from infected plants. Phytopathology 97: 119-127.

被引用紀錄


黃尚仁(2012)。可同時檢測三種病毒之香蕉生物晶片系統之開發〔碩士論文,朝陽科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0078-1511201214173561
黃莉真(2014)。可同時檢測多種百香果病毒之多目標型增幅及晶片檢測系統〔碩士論文,朝陽科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0078-2611201410181994
張至超(2017)。馬鈴薯病毒多目標型檢測系統之改良及一種新紀錄之扁蒲種傳病毒之分子特性分析〔碩士論文,朝陽科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0078-2712201714433463

延伸閱讀