透過您的圖書館登入
IP:18.117.216.229
  • 學位論文

硼氫化鈉水解產氫系統之設計與控制

Design and Control of a Hydrogen Generation System using the Sodium Borohydride Hydrolysis Reaction

指導教授 : 吳哲夫
共同指導教授 : 陳逸航(Yih-Hung Chen)

摘要


世界能源正面臨一個新的轉捩點,在能源消費結構中,開始從石油為主要能源逐步向多元能源結構過度,氫能源便是替代能源中極受囑目之一。使用氫能源的一大問題的氫氣的儲存,其中化學儲氫法的硼氫化鈉(NaBH4)具有潛力達到美國能源局(DOE)所訂定的2015年儲氫系統能源密度標準(5.5wt%) [28]。 此篇研究係建立硼氫化鈉(NaBH4)連續式產氫系統之數學模式,以描述該系統的行為,在等溫、絕熱、部份熱移除等不同的操作狀態下,探討反應器不同的熱移除量與系統儲氫量之關聯。在連續式產氫系統中,偏硼酸鈉(NaBO2)的濃度會受到高反應熱釋出所產生的大量水蒸氣之影響,而較高的反應器出口溫度可以有效提升NaBO2飽和溶解度,因此產氫系統傾向操作在部份熱移除的情況下,會有較好的能量密度表現。接著,為了解決大量氣體(包括水蒸氣和氫氣)充滿塞流式反應器,造成NaBH4溶液無法有效與觸媒表面活性位置接觸之問題,本研究同時提出一個新的反應器設計架構,即在塞流式反應器中,增設一層針孔膜,藉此分離出液相與氣相通道,使NaBH4水解反應更易進行,並可省去裝設氣液分離器的重量,進一步增加系統的能量密度。 此外,本研究針對控制目標,即加快氫氣產能需求改變時之動態響應,並避免NaBO2析出的問題,提出了二個控制架構如下,一、以進料當作產能調節變數;二、以氫氣出口流量做為產能調節變數。在此二種控制架構下,當氫氣需求量改變時,皆無NaBO2析出的問題,並且氫氣流量皆獲得合理的動態響應。 為了使產氫系統能即時、快速地供應燃料電池使用,本研究建立之冷進料的啟動策略係脈衝連結一階式的進料形態,在絕熱環境下操作,並且結合前次啟動後儲存在反應器中的氫氣,使硼氫化鈉(NaBH4)產氫系統達到DOE的目標啟動時間(即5~15秒) [28]。

關鍵字

儲氫 程序設計 模式化 控制 啟動

並列摘要


NaBH4 hydrolysis for on-board hydrogen generation has received much attention recently due to its higher theoretical energy capacity and zero emissions. In this work, three different operating modes (adiabatic, isothermal, Partially-insulated) of a continuous hydrogen generation system using the NaBH4 hydrolysis reaction are explored. Partially-insulated operation is recommended for this system since it has a higher outlet temperature and lower temperature distribution in reactor, which both mitigate the NaBO2 precipitation problem so that a larger energy density can be achieved. A novel reactor design is proposed to overcome the effects of gas generation and multiphase flow from the NaBH4 hydrolysis reaction. With a pinhole membrane set in the middle of reactor tube to provide gas and liquid channels respectively, the multi-phase flow problem is reduced and energy capacity increased since a separator is not needed for gas-liquid separation. Next, two control structures are developed and both give reasonable dynamic results. The on-supply structure gives fast response while the on-demand structure provides a simple control loop to adjust hydrogen generation directly. After control policies are designed, a cold start-up strategy is developed using a pulse plus step function feed input and reserved hydrogen from previous reaction to give rapid and sufficient hydrogen gas to supply a PEM fuel cell.

並列關鍵字

hydrogen storage process design modeling control start-up

參考文獻


[3] Amendola SC, Sharp-Goldman SL, Janjua MS, Spencer NC, Kelly MT, Petillo PJ, et al. A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst. International Journal of Hydrogen Energy 2000;25(10):969-75.
[4] Prosini PP, Gislon P. A hydrogen refill for cellular phone. Journal of Power Sources 2006;161(1):290-93.
[5] Amendola SC, Sharp-Goldman SL, Janjua MS, Kelly MT, Petillo PJ, Binder M. An ultrasafe hydrogen generator: aqueous, alkaline borohydride solutions and Ru catalyst. Journal of Power Sources 2000;85(2):186-89.
[6] Zhang JS, Zheng Y, Gore JP, Fisher TS. 1 kW(e) sodium borohydride hydrogen generation system Part I: Experimental study. Journal of Power Sources 2007;165(2):844-53.
[7] Dong H, Yang HX, Ai XP, Cha CS. Hydrogen production from catalytic hydrolysis of sodium borohydride solution using nickel boride catalyst. International Journal of Hydrogen Energy 2003;28(10):1095-100.

延伸閱讀