透過您的圖書館登入
IP:18.219.22.169
  • 學位論文

微奈米生物分子塗佈技術之研發

The Configurable Biomolecular Micro-Pattern Controlled by Surface Potential

指導教授 : 林致廷

摘要


隨著微機電製程技術的進步,生物晶片的整合與開發逐漸成為一重要的研究領域[1]。此項領域中,生物分子塗佈技術占有關鍵性的地位[2]。目前已發展的塗佈技術如利用半導體與微機電製程的微影技術(photolithography)、噴墨列印技術(inkjet printing)、微壓印技術(microcontact printing)等及其各種衍生方法,但可同時達到高解析度(次微米至奈米等級)與高效率的方法卻十分有限,而高解析度的塗佈又在奈米級生物晶片技術中極度重要[3]。為了達成這項目標,我們發展出一項生物分子塗佈技術,並製作元件以驗證此技術的可行性與優勢。利用某些特殊材料具有的電致濕潤特性(Electrowetting),我們可以控制外加電壓的大小來調變元件的表面位能,進而造成元件表面親疏水性的改變,而疏水作用力又是生物分子之間存在的一主要非共價交互作用力。因此,元件表面與生物分子之間的附著力就可以由外加電壓的強弱進行調控,且生物分子的塗佈圖樣可被電極的形狀所決定,若製作出奈米尺度的電極,生物分子塗佈的解析度即可達到奈米等級。此方法塗佈的效率非常高,一次完整的塗佈可在數分鐘至數十分鐘之內完成,並且可依序在元件表面的不同區域塗佈多種生物分子,達成可程式化的塗佈。這支技術兼顧了生物分子塗佈時所需的各項優點,其出現將可為未來舉足輕重的生物晶片相關領域之研究與發展注入新的動力。

並列摘要


The biomolecular patterning techniques play an essential role in the emerging biosensor and biochip research fields [1][2]. Previous works such as photolithography, inkjet printing, micro-contact printing and electro-chemical reactions, however, cannot achieve high-resolution and high-efficiency patterning at the same time [3]. In order to solve this problem, we have developed a patterning technique taking advantage of the change of surface hydrophobicity. The hydrophobicity can be modulated by the surface potential driven by electrical voltage on the device electrodes. With this technique, we have demonstrated the feasibility of finishing the nano-scale biomolecular patterning in an efficient way. In addition, the multiplexed biomolecular patterning is also achieved in this work. This patterning technique can be a powerful tool for the future biochip development and research fields.

參考文獻


[2] A. S. Blawas, W. M. Reichert, “Protein patterning (Review).” Biomaterials, 1998, 19, pp. 595-609.
[3] C. Y. Fan, Y.-C. Tung, S. Takayama, E. Meyhofer, K. Kurabayashi, “Electrically programmable surfaces for reconfigurable cell patterning.” Advanced Materials, 2008, 20, pp. 1418-1423.
[4] T. Vo-Dinh, B. Cullum, “Biosensors and biochips: advances in biological and medical diagnostics (Review).” Fresenius Journal of Analytical Chemistry, 2000, 366, pp. 540-551.
[6] C. Y. Fan, K. Kurabayashi, E. Meyhöfer, “Protein pattern assembly by active control of a triblock copolymer monolayer.” Nano Lett., 2006, 6, pp. 2763-2767.
[7] E.A. Roth, T. Xu, M. Das, C. Gregory, J.J. Hickman, T. Boland, “Inkjet printing for high-throughput cell patterning.” Biomaterials, 2004, 25, pp. 3707–3715.

被引用紀錄


王翊倫(2013)。以表面電位控制之次微米細胞塗布技術之研發〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2013.01692

延伸閱讀